Conventional approaches towards energy-system modelling and operation are based upon the system design and performance optimization.In system-design optimization,the thermal or mechanical characteristics of the system...Conventional approaches towards energy-system modelling and operation are based upon the system design and performance optimization.In system-design optimization,the thermal or mechanical characteristics of the systems providing for the heat or electricity demands were derived separately without integration with the energy source and without interaction with demand,which results in low-efficiency energy performance.This paper presents a key review on the integration of biomass-powered combined heat and power(BCHP)systems in district-heating systems as well as coupling with thermal-energy storage.In BCHP design,the appropriate sizing of the associated components as part of the district-heating system is very important to provide the optimal dispatch strategy as well as minimized cost and environmental impact while it co-operates with thermal-energy storage.Future strategies for the feasibility,evaluation and integration of biomass-powered energy systems in the context of district systems are also studied.展开更多
Improving energy performance of buildings is of particular importance in new construction and existing buildings.Building refurbishment is considered a practical pathway towards energy efficiency as the replacement of...Improving energy performance of buildings is of particular importance in new construction and existing buildings.Building refurbishment is considered a practical pathway towards energy efficiency as the replacement of older buildings is at a slow pace.There are various ways of incorporating energy conservation measures in buildings through refurbishment projects.As such,we have to choose among various passive or active measures.In this study,we develop an integrated assessment model to direct energy management decisions in retrofit projects.Our focus will be on alternative passive measures that can be included in refurbishment projects to reduce overall energy consumption in buildings.We identify the relative priority of these alternatives with respect to their non-monetary(qualitative)benefits and issues using an analytic network process.Then,the above priorities will form a utility function that will be optimized along with the energy demand and retrofit costs using a multi-objective optimization model.We also explore various approaches to formulate the uncertainties that may arise in cost estimations and incorporate them into the optimization model.The applicability and authenticity of the proposed model is demonstrated through an illustrative case study application.The results reveal that the choice of the optimization approach for a retrofit project shall be done with respect to the extent of variations(uncertainties)in expected utilities(benefits)and costs for the alternative passive technologies.展开更多
文摘Conventional approaches towards energy-system modelling and operation are based upon the system design and performance optimization.In system-design optimization,the thermal or mechanical characteristics of the systems providing for the heat or electricity demands were derived separately without integration with the energy source and without interaction with demand,which results in low-efficiency energy performance.This paper presents a key review on the integration of biomass-powered combined heat and power(BCHP)systems in district-heating systems as well as coupling with thermal-energy storage.In BCHP design,the appropriate sizing of the associated components as part of the district-heating system is very important to provide the optimal dispatch strategy as well as minimized cost and environmental impact while it co-operates with thermal-energy storage.Future strategies for the feasibility,evaluation and integration of biomass-powered energy systems in the context of district systems are also studied.
文摘Improving energy performance of buildings is of particular importance in new construction and existing buildings.Building refurbishment is considered a practical pathway towards energy efficiency as the replacement of older buildings is at a slow pace.There are various ways of incorporating energy conservation measures in buildings through refurbishment projects.As such,we have to choose among various passive or active measures.In this study,we develop an integrated assessment model to direct energy management decisions in retrofit projects.Our focus will be on alternative passive measures that can be included in refurbishment projects to reduce overall energy consumption in buildings.We identify the relative priority of these alternatives with respect to their non-monetary(qualitative)benefits and issues using an analytic network process.Then,the above priorities will form a utility function that will be optimized along with the energy demand and retrofit costs using a multi-objective optimization model.We also explore various approaches to formulate the uncertainties that may arise in cost estimations and incorporate them into the optimization model.The applicability and authenticity of the proposed model is demonstrated through an illustrative case study application.The results reveal that the choice of the optimization approach for a retrofit project shall be done with respect to the extent of variations(uncertainties)in expected utilities(benefits)and costs for the alternative passive technologies.