Advances in micro-electro-mechanical systems (MEMS) and information communication technology (ICT) have facilitated the development of integrated electrical power systems for the future. A recent major issue is the ne...Advances in micro-electro-mechanical systems (MEMS) and information communication technology (ICT) have facilitated the development of integrated electrical power systems for the future. A recent major issue is the need for a healthy and sustainable power transmission and distribution system that is smart, reliable and climate-friendly. Therefore, at the start of the 21st Century, Government, utilities and research communities are working jointly to develop an intelligent grid system, which is now known as a smart grid. Smart grid will provide highly consistent and reliable services, efficient energy management practices, smart metering integration, automation and precision decision support systems and self healing facilities. Smart grid will also bring benefits of seamless integration of renewable energy sources to the power networks. This paper focuses on the benefits and probable deployment issues of smart grid technology for a sustainable future both nationally and internationally. This paper also investigates the ongoing major research programs in Europe, America and Australia for smart grid and the associated enabling technologies. Finally, this study explores the prospects and characteristics of renewable energy sources with possible deployment integration issues to develop a clean energy smart grid technology for an intelligent power system.展开更多
Continuous usage of fossil fuels and other conventional resources to meet the growing demand has resulted in increased energy crisis and greenhouse gas emissions. Hence, it is essential to use renewable energy sources...Continuous usage of fossil fuels and other conventional resources to meet the growing demand has resulted in increased energy crisis and greenhouse gas emissions. Hence, it is essential to use renewable energy sources for more reliable, effective, sustainable and pollution free transmission and distribution networks. Therefore, to facilitate large-scale integration of renewable energy in particular wind and solar photovoltaic (PV) energy, this paper presents the feasibility analysis for semi-arid climate and finds the most suitable places in North East region of Victoria for renewable energy generation. For economic and environmental analysis, Hybrid Optimization Model for Electric Renewables (HOMER) was used to investigate the prospects of wind and solar energy considering the Net Present Cost (NPC), Cost of Energy (COE) and Renewable fraction (RF). Six locations are selected from North East region of Victoria and simulations are performed. From the feasibility analysis, it can be concluded that Mount Hotham is one of the most suitable locations for wind energy generation while Wangaratta is the most suitable location for solar energy generation. Mount Hotham is also the best suitable locations in North East region for hybrid power systems i.e., combination of both wind and solar energy generation.展开更多
Energy storage is an essential part in effective utilization of Renewable Energy (RE). Most RE sources cannot provide constant energy supply and introduce a potential unbalance in generation and demand, especially in ...Energy storage is an essential part in effective utilization of Renewable Energy (RE). Most RE sources cannot provide constant energy supply and introduce a potential unbalance in generation and demand, especially in off-peak periods when RE generates more energy and in peak period when load demand rises too high. Storage allows intermittent sources like solar Photovoltaic (PV) to address timely load demand and adds flexibility in load management. This paper analyses the significance of storage for residential load considering solar PV as RE generator. The significance of storage was evaluated in off-grid or stand alone and grid connected configurations. Moreover it outlined the significance of storage in terms of environment and economics by comparing the Renewable Fraction (RF), Greenhouse Gas (GHG) emission, Cost of Energy (COE) and Net Present Cost (NPC). Investigation showed that storage has positive influences on both (off-grid and grid connected) configurations by improving PV utilization. It was found that in grid connected configuration storage reduced 46.47% of GHG emission, reduced COE, NPC and improved RF compared to the system without storage.展开更多
文摘Advances in micro-electro-mechanical systems (MEMS) and information communication technology (ICT) have facilitated the development of integrated electrical power systems for the future. A recent major issue is the need for a healthy and sustainable power transmission and distribution system that is smart, reliable and climate-friendly. Therefore, at the start of the 21st Century, Government, utilities and research communities are working jointly to develop an intelligent grid system, which is now known as a smart grid. Smart grid will provide highly consistent and reliable services, efficient energy management practices, smart metering integration, automation and precision decision support systems and self healing facilities. Smart grid will also bring benefits of seamless integration of renewable energy sources to the power networks. This paper focuses on the benefits and probable deployment issues of smart grid technology for a sustainable future both nationally and internationally. This paper also investigates the ongoing major research programs in Europe, America and Australia for smart grid and the associated enabling technologies. Finally, this study explores the prospects and characteristics of renewable energy sources with possible deployment integration issues to develop a clean energy smart grid technology for an intelligent power system.
文摘Continuous usage of fossil fuels and other conventional resources to meet the growing demand has resulted in increased energy crisis and greenhouse gas emissions. Hence, it is essential to use renewable energy sources for more reliable, effective, sustainable and pollution free transmission and distribution networks. Therefore, to facilitate large-scale integration of renewable energy in particular wind and solar photovoltaic (PV) energy, this paper presents the feasibility analysis for semi-arid climate and finds the most suitable places in North East region of Victoria for renewable energy generation. For economic and environmental analysis, Hybrid Optimization Model for Electric Renewables (HOMER) was used to investigate the prospects of wind and solar energy considering the Net Present Cost (NPC), Cost of Energy (COE) and Renewable fraction (RF). Six locations are selected from North East region of Victoria and simulations are performed. From the feasibility analysis, it can be concluded that Mount Hotham is one of the most suitable locations for wind energy generation while Wangaratta is the most suitable location for solar energy generation. Mount Hotham is also the best suitable locations in North East region for hybrid power systems i.e., combination of both wind and solar energy generation.
文摘Energy storage is an essential part in effective utilization of Renewable Energy (RE). Most RE sources cannot provide constant energy supply and introduce a potential unbalance in generation and demand, especially in off-peak periods when RE generates more energy and in peak period when load demand rises too high. Storage allows intermittent sources like solar Photovoltaic (PV) to address timely load demand and adds flexibility in load management. This paper analyses the significance of storage for residential load considering solar PV as RE generator. The significance of storage was evaluated in off-grid or stand alone and grid connected configurations. Moreover it outlined the significance of storage in terms of environment and economics by comparing the Renewable Fraction (RF), Greenhouse Gas (GHG) emission, Cost of Energy (COE) and Net Present Cost (NPC). Investigation showed that storage has positive influences on both (off-grid and grid connected) configurations by improving PV utilization. It was found that in grid connected configuration storage reduced 46.47% of GHG emission, reduced COE, NPC and improved RF compared to the system without storage.