Pulse Width Modulated (PWM) inverter-fed induction motor drives are most common in industrial applications. This paper aims at development of double boost converter for PWM inverter-fed three-phase induction motor. Th...Pulse Width Modulated (PWM) inverter-fed induction motor drives are most common in industrial applications. This paper aims at development of double boost converter for PWM inverter-fed three-phase induction motor. The inverter topology is designed with four switches. The proposed drive system has been simulated using Matlab/Simulink and the performance of has been assessed in terms of output voltage, output current, power factor and THD. From the simulation results, it is evident that the three-phase voltage waveforms of the proposed system are less distorted, with their currents being more sinusoidal. A comparative analysis has been made with the conventional six-switch inverter fed drive. The proposed system offered a THD of 1.84%, whereas for the conventional system it was 13.96%. These results inferred that the proposed double boost converter with four-switch based drive scheme exhibits superior performance.展开更多
文摘Pulse Width Modulated (PWM) inverter-fed induction motor drives are most common in industrial applications. This paper aims at development of double boost converter for PWM inverter-fed three-phase induction motor. The inverter topology is designed with four switches. The proposed drive system has been simulated using Matlab/Simulink and the performance of has been assessed in terms of output voltage, output current, power factor and THD. From the simulation results, it is evident that the three-phase voltage waveforms of the proposed system are less distorted, with their currents being more sinusoidal. A comparative analysis has been made with the conventional six-switch inverter fed drive. The proposed system offered a THD of 1.84%, whereas for the conventional system it was 13.96%. These results inferred that the proposed double boost converter with four-switch based drive scheme exhibits superior performance.