This paper analyzes the state of the ionosphere during two geomagnetic storms of a different intensity evolving in different sectors of local time in different seasons. There were used the data from a network of ionos...This paper analyzes the state of the ionosphere during two geomagnetic storms of a different intensity evolving in different sectors of local time in different seasons. There were used the data from a network of ionospheric stations located in the opposite longitudinal sectors of 80°-150° E and 250°-310° E.This analysis has permitted us to conclude that the detected differences in the variations of the disturbances are likely to be determined by the local time difference of the geomagnetic storm development, its intensity and by the different illumination conditions of the ionosphere.展开更多
This paper presents simulated results of the ionospheric behavior during few geomagnetic storms,which were occurred in the different seasons. The numerical model for ionosphere-plasmasphere coupling was used to interp...This paper presents simulated results of the ionospheric behavior during few geomagnetic storms,which were occurred in the different seasons. The numerical model for ionosphere-plasmasphere coupling was used to interpret the observed variation of ionosphere structure. Reasons why the positive storms are dominant in the winter whereas the negative ones are dominant in the summer season present the special interest for the mid-latitude ionosphere. A theoretical analysis of the processes controlling the ionospheric response to the geomagnetic storms has showed a good agreement between the simulated results and measurements, as well as the crucial role of the neutral composition variations to fit the calculated and the observed ionospheric parameters.展开更多
This paper presents convincing evidence for the reality of manifestations of solar variability in climate characteristics of the Prebaikalia. A numerical estimate is obtained of this influence on ground air temperatur...This paper presents convincing evidence for the reality of manifestations of solar variability in climate characteristics of the Prebaikalia. A numerical estimate is obtained of this influence on ground air temperature. It is shown that the main meaningful variations in air temperature in the region for the period1881-1960 were caused by solar activity. Since the 1960s till the present, with the influence of solar variability continuing, a clear-cut influence of another factor has been observed, the role of which has been steadily increasing, and in the hst decade it has now exceeded the contribution of solar variability. Research results on the variations in hydrological characteristics of Lake Baikal and the Angara river and their connection with solar activity are presented. It is shown that these characteristics are closely correlated with the duration of solar cycles.展开更多
Possible mechanisms of solar-climatic connections, which may be of importance as over short and long time intervals, are discussed. The variations of energetic balance of Earth's climatic system for the last fifty...Possible mechanisms of solar-climatic connections, which may be of importance as over short and long time intervals, are discussed. The variations of energetic balance of Earth's climatic system for the last fifty years are estimated. It is ascertained that the disbalance between the flux of solar energy that comes to the Earth and radiates to space is of 0.1% for the last ten years. The suggested mechanism makes it possible to explain not only the observed variation of the enthalpy of the Earth's climatic system for the period 1910-1980, but also the climate anomalies during last thousand years: the climate optimum in 12 century, and"small glacial period" in 16-17 centuries.展开更多
Using the digisonde data observed at ionospheric station Norilsk (Dip lat. 60~N) in 2006, a statistical study on the characteristics of the ionospheric plasma total absorption of radio waves (IPTAR) was performed....Using the digisonde data observed at ionospheric station Norilsk (Dip lat. 60~N) in 2006, a statistical study on the characteristics of the ionospheric plasma total absorption of radio waves (IPTAR) was performed. In the winter and some months of equinox, the IPTAR mainly occurred in the nighttime and the highest occurrence rate could be up to 90%. In the summer, the occurrence was relatively low and the differences between nighttime and daytime occurrence reduced. The total duration of IPTAR seemed longer around the winter than that around the summer. The occurrence of IPTAR events ascended as the Kp index increased. The frequent precipitation of energetic particles into the ionospheric plasma in the auroral belt may be the main cause of the IPTAR events.展开更多
基金Supported partly bv RFBR (No. 04-05-39008)the Foundation for State Support of Leading Scientific Schools of the Russian Federation (No. NSh-272.2003.5)the China-Russia Joint Research Center on Space WeatherChinese Academy of Sciences
文摘This paper analyzes the state of the ionosphere during two geomagnetic storms of a different intensity evolving in different sectors of local time in different seasons. There were used the data from a network of ionospheric stations located in the opposite longitudinal sectors of 80°-150° E and 250°-310° E.This analysis has permitted us to conclude that the detected differences in the variations of the disturbances are likely to be determined by the local time difference of the geomagnetic storm development, its intensity and by the different illumination conditions of the ionosphere.
基金Supported by Russian Foundation for Basic Research (No. 04-05-39008, N02-05-64570)the China-Russia Joint Research Center on Space WeatherChinese Academy of Sciences
文摘This paper presents simulated results of the ionospheric behavior during few geomagnetic storms,which were occurred in the different seasons. The numerical model for ionosphere-plasmasphere coupling was used to interpret the observed variation of ionosphere structure. Reasons why the positive storms are dominant in the winter whereas the negative ones are dominant in the summer season present the special interest for the mid-latitude ionosphere. A theoretical analysis of the processes controlling the ionospheric response to the geomagnetic storms has showed a good agreement between the simulated results and measurements, as well as the crucial role of the neutral composition variations to fit the calculated and the observed ionospheric parameters.
基金Supported by the China-Russia Joint Research Center on Space WeatherChinese Academy of Sciences
文摘This paper presents convincing evidence for the reality of manifestations of solar variability in climate characteristics of the Prebaikalia. A numerical estimate is obtained of this influence on ground air temperature. It is shown that the main meaningful variations in air temperature in the region for the period1881-1960 were caused by solar activity. Since the 1960s till the present, with the influence of solar variability continuing, a clear-cut influence of another factor has been observed, the role of which has been steadily increasing, and in the hst decade it has now exceeded the contribution of solar variability. Research results on the variations in hydrological characteristics of Lake Baikal and the Angara river and their connection with solar activity are presented. It is shown that these characteristics are closely correlated with the duration of solar cycles.
基金Supported by the China-Russia Joint Research Center on Space Weather,Chinese Academy of Sciences
文摘Possible mechanisms of solar-climatic connections, which may be of importance as over short and long time intervals, are discussed. The variations of energetic balance of Earth's climatic system for the last fifty years are estimated. It is ascertained that the disbalance between the flux of solar energy that comes to the Earth and radiates to space is of 0.1% for the last ten years. The suggested mechanism makes it possible to explain not only the observed variation of the enthalpy of the Earth's climatic system for the period 1910-1980, but also the climate anomalies during last thousand years: the climate optimum in 12 century, and"small glacial period" in 16-17 centuries.
基金supported by National Natural Science Foundation of China(No.41274146)the Specialized Research Fund for State Key Laboratories of China
文摘Using the digisonde data observed at ionospheric station Norilsk (Dip lat. 60~N) in 2006, a statistical study on the characteristics of the ionospheric plasma total absorption of radio waves (IPTAR) was performed. In the winter and some months of equinox, the IPTAR mainly occurred in the nighttime and the highest occurrence rate could be up to 90%. In the summer, the occurrence was relatively low and the differences between nighttime and daytime occurrence reduced. The total duration of IPTAR seemed longer around the winter than that around the summer. The occurrence of IPTAR events ascended as the Kp index increased. The frequent precipitation of energetic particles into the ionospheric plasma in the auroral belt may be the main cause of the IPTAR events.