期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Semantic Pneumonia Segmentation and Classification for Covid-19 Using Deep Learning Network
1
作者 M.M.Lotfy Hazem M.El-Bakry +4 位作者 M.M.Elgayar Shaker El-Sappagh g.abdallah m.i A.A.Soliman Kyung Sup Kwak 《Computers, Materials & Continua》 SCIE EI 2022年第10期1141-1158,共18页
Early detection of the Covid-19 disease is essential due to its higher rate of infection affecting tens of millions of people,and its high number of deaths also by 7%.For that purpose,a proposed model of several stage... Early detection of the Covid-19 disease is essential due to its higher rate of infection affecting tens of millions of people,and its high number of deaths also by 7%.For that purpose,a proposed model of several stages was developed.The first stage is optimizing the images using dynamic adaptive histogram equalization,performing a semantic segmentation using DeepLabv3Plus,then augmenting the data by flipping it horizontally,rotating it,then flipping it vertically.The second stage builds a custom convolutional neural network model using several pre-trained ImageNet.Finally,the model compares the pre-trained data to the new output,while repeatedly trimming the best-performing models to reduce complexity and improve memory efficiency.Several experiments were done using different techniques and parameters.Accordingly,the proposed model achieved an average accuracy of 99.6%and an area under the curve of 0.996 in the Covid-19 detection.This paper will discuss how to train a customized intelligent convolutional neural network using various parameters on a set of chest X-rays with an accuracy of 99.6%. 展开更多
关键词 SARS-COV2 COVID-19 PNEUMONIA deep learning network semantic segmentation smart classification
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部