The study in this manuscript aims to analyse the impact of thermal radiation on the two-dimensional magnetohydrodynamic flow of upper convected Maxwell(UCM)fluid between parallel plates.The lower plate is porous and s...The study in this manuscript aims to analyse the impact of thermal radiation on the two-dimensional magnetohydrodynamic flow of upper convected Maxwell(UCM)fluid between parallel plates.The lower plate is porous and stationary,while the top plate is impermeable and moving.The equations that describe the flow are transformed into non-linear ordinary differential equations with boundary conditions by employing similarity transformations.The Homotopy Perturbation Method(HPM)is then employed to approach the obtained non-linear ordinary differential equations and get an approximate analytical solution.The analysis includes plotting the velocity profile for different Reynolds number values and temperature distribution curves for distinct physical parameters such as Reynolds number,Deborah number,magnetic parameter,porosity parameter,radiation parameter,and Prandtl number.In the case of injection,the temporal profile declines with an increase in radiation parameter as the plates move away from each other,and an opposite trend is observed as plates move towards each other.Furthermore,the skin friction coefficient and heat transfer rate are analysed for the impact of these parameters using HPM.The numerical values obtained using HPM are compared using the classical finite difference method.The results show good agreement between the semi-analytical and numerical solutions.展开更多
文摘The study in this manuscript aims to analyse the impact of thermal radiation on the two-dimensional magnetohydrodynamic flow of upper convected Maxwell(UCM)fluid between parallel plates.The lower plate is porous and stationary,while the top plate is impermeable and moving.The equations that describe the flow are transformed into non-linear ordinary differential equations with boundary conditions by employing similarity transformations.The Homotopy Perturbation Method(HPM)is then employed to approach the obtained non-linear ordinary differential equations and get an approximate analytical solution.The analysis includes plotting the velocity profile for different Reynolds number values and temperature distribution curves for distinct physical parameters such as Reynolds number,Deborah number,magnetic parameter,porosity parameter,radiation parameter,and Prandtl number.In the case of injection,the temporal profile declines with an increase in radiation parameter as the plates move away from each other,and an opposite trend is observed as plates move towards each other.Furthermore,the skin friction coefficient and heat transfer rate are analysed for the impact of these parameters using HPM.The numerical values obtained using HPM are compared using the classical finite difference method.The results show good agreement between the semi-analytical and numerical solutions.