PULSED-co-electrodeposition (PCD) is a new and promising technique for producing alloymaterials of nanometer grain size. In this letter, Co-Ni alloys were produced by PCD, and theeffect of CO<sup>+2</sup>...PULSED-co-electrodeposition (PCD) is a new and promising technique for producing alloymaterials of nanometer grain size. In this letter, Co-Ni alloys were produced by PCD, and theeffect of CO<sup>+2</sup> ion concentration in the depositing baths on the Co content and the microstruc-ture in the corresponding deposit was studied by the position sensitive atom probe (PoSAP),TEM and X-ray diffraction. The Co-Ni phase diagram shows that, at room temperature,there are two phases in Co-Ni alloys, one is εCo with hcp lattice, the other is αCo of fcc lat-tice. A Co-Ni alloy with a Ni content below 27% consists of single εCo, beyond 36% consistsof single αCo, in between consists of εCo + αCo. The examination results of TEM, SEM andX-ray diffraction indicated that the Co-Ni deposits with average grain size of 70 nm and thick-展开更多
文摘PULSED-co-electrodeposition (PCD) is a new and promising technique for producing alloymaterials of nanometer grain size. In this letter, Co-Ni alloys were produced by PCD, and theeffect of CO<sup>+2</sup> ion concentration in the depositing baths on the Co content and the microstruc-ture in the corresponding deposit was studied by the position sensitive atom probe (PoSAP),TEM and X-ray diffraction. The Co-Ni phase diagram shows that, at room temperature,there are two phases in Co-Ni alloys, one is εCo with hcp lattice, the other is αCo of fcc lat-tice. A Co-Ni alloy with a Ni content below 27% consists of single εCo, beyond 36% consistsof single αCo, in between consists of εCo + αCo. The examination results of TEM, SEM andX-ray diffraction indicated that the Co-Ni deposits with average grain size of 70 nm and thick-