With increasing attention to complex fluids and soft matter, we have witnessed a fast- growing research in mesoscopic modeling and simulation in the past decades. The development of mesoscopic methods offers many pote...With increasing attention to complex fluids and soft matter, we have witnessed a fast- growing research in mesoscopic modeling and simulation in the past decades. The development of mesoscopic methods offers many potential opportunities as well as challenges in modeling of complex materials for diverse applications. Despite significant progress in the past decade, mesoscopic methods are still under development. New formulation in the models, novel theo- retical interpretations, and innovative numerical algorithms often appear in literature. These mesoscopic methods have been already applied to a large number of problems, including poly- mer and colloidal suspensions, multiphase fluids, biological materials, and blood rheology. New applications of mesoscopic modeling in different areas are still emerging.展开更多
文摘With increasing attention to complex fluids and soft matter, we have witnessed a fast- growing research in mesoscopic modeling and simulation in the past decades. The development of mesoscopic methods offers many potential opportunities as well as challenges in modeling of complex materials for diverse applications. Despite significant progress in the past decade, mesoscopic methods are still under development. New formulation in the models, novel theo- retical interpretations, and innovative numerical algorithms often appear in literature. These mesoscopic methods have been already applied to a large number of problems, including poly- mer and colloidal suspensions, multiphase fluids, biological materials, and blood rheology. New applications of mesoscopic modeling in different areas are still emerging.