Constructing bimodal grain structure is a promising approach to achieve the high strength-ductility syn-ergy in Mg alloy.Formation of bimodal grain is closely related to the dynamic and/or static recrystal-lization pr...Constructing bimodal grain structure is a promising approach to achieve the high strength-ductility syn-ergy in Mg alloy.Formation of bimodal grain is closely related to the dynamic and/or static recrystal-lization process,which has not been fully understood in the typical Mg-RE based alloy.In this work,it is claimed for the first time that the minor Ce addition(∼0.3 wt%)into Mg matrix significantly pro-motes the pyramidal<c+a>and non-basal<a>dislocations at the early stage of extrusion,which con-sequently enhances the formation of sub-grain boundaries via the movement and recovery of pyramidal II-type<c+a>dislocations.At this stage,fine sub-grain lamellae are widely observed predominantly due to the low migration rate of sub-grain boundary caused by the limited mobility of<c+a>dislocations.At the later stage,the sub-grains continuously transform into dynamic recrystallized(DRXed)grains that have10¯10Taylor axis and also strong fiber texture,indicating substantial activation of pyramidal II-type<c+a>dislocation.The low mobility of<c+a>dislocations,accompanied with the solute drag from grain boundary(GB)segregation and pinning from nano-phases,cause a sluggish DRX process and thus a bimodal microstructure with ultra-fined DRXed grains,∼0.51μm.The resultant texture hardening and grain refinement hardening effects,originated from bimodal microstructure,result in a yield strength of∼352 MPa,which is exceptional in Mg-Ce dilute alloy.This work clarifies the critical role of Ce addition in tuning recrystallization behavior and mechanical property of magnesium,and can also shed light on designing the other high-performance Mg alloys.展开更多
Although Cu was studied extensively,the Hall-Petch relationship was mainly reported in the coarsegrained regime.In this work,fully recrystallized Cu specimens with a wide grain size regime of 0.51–14.93μm manifest a...Although Cu was studied extensively,the Hall-Petch relationship was mainly reported in the coarsegrained regime.In this work,fully recrystallized Cu specimens with a wide grain size regime of 0.51–14.93μm manifest a two-stage Hall-Petch relationship.There is a critical grain size of 3μm that divides stagesⅠandⅡwhere the Hall-Petch slope k value are quite different.The stageⅡis supposed to be validified down to 100 nm at least by comparing with a Cu-Ag alloy.The critical grain size varies in different materials systems,and the underline mechanisms are discussed based on the dislocation glide modes.展开更多
基金supported by National Key Research and De-velopment Program of China(No.2021YFB3701002)National Nat-ural Science Foundation of China(No.U2167213,51971053)+1 种基金and funded by the Project of Promoting Talents in Liaoning province(No.XLYC1808038).H.C.Pan acknowledges the financial assistance from Young Elite Scientists Sponsorship Program by CAST(2019-2021QNRC001,2019-2021QNRC002,2019-2021QNRC003)the fund from the Fundamental Research Funds for the Central Univer-sities(N2202020).
文摘Constructing bimodal grain structure is a promising approach to achieve the high strength-ductility syn-ergy in Mg alloy.Formation of bimodal grain is closely related to the dynamic and/or static recrystal-lization process,which has not been fully understood in the typical Mg-RE based alloy.In this work,it is claimed for the first time that the minor Ce addition(∼0.3 wt%)into Mg matrix significantly pro-motes the pyramidal<c+a>and non-basal<a>dislocations at the early stage of extrusion,which con-sequently enhances the formation of sub-grain boundaries via the movement and recovery of pyramidal II-type<c+a>dislocations.At this stage,fine sub-grain lamellae are widely observed predominantly due to the low migration rate of sub-grain boundary caused by the limited mobility of<c+a>dislocations.At the later stage,the sub-grains continuously transform into dynamic recrystallized(DRXed)grains that have10¯10Taylor axis and also strong fiber texture,indicating substantial activation of pyramidal II-type<c+a>dislocation.The low mobility of<c+a>dislocations,accompanied with the solute drag from grain boundary(GB)segregation and pinning from nano-phases,cause a sluggish DRX process and thus a bimodal microstructure with ultra-fined DRXed grains,∼0.51μm.The resultant texture hardening and grain refinement hardening effects,originated from bimodal microstructure,result in a yield strength of∼352 MPa,which is exceptional in Mg-Ce dilute alloy.This work clarifies the critical role of Ce addition in tuning recrystallization behavior and mechanical property of magnesium,and can also shed light on designing the other high-performance Mg alloys.
基金supported financially by the Fundamental Research Funds for the Central Universities(No.N180204015)supported by Chinese Academy of Sciences(CAS)and Japan Society for the Promotion of Science(JSPS)through the Bilateral Program(No.GJHZ1774)supported by Ministry of Education,Culture,Sports,Science and Technology(MEXT),Japan,through the Elements Strategy Initiative for Structural Materials(ESISM)Project and the Grant-in-Aid for Scientific Research(S)(No.15H05767)。
文摘Although Cu was studied extensively,the Hall-Petch relationship was mainly reported in the coarsegrained regime.In this work,fully recrystallized Cu specimens with a wide grain size regime of 0.51–14.93μm manifest a two-stage Hall-Petch relationship.There is a critical grain size of 3μm that divides stagesⅠandⅡwhere the Hall-Petch slope k value are quite different.The stageⅡis supposed to be validified down to 100 nm at least by comparing with a Cu-Ag alloy.The critical grain size varies in different materials systems,and the underline mechanisms are discussed based on the dislocation glide modes.