Objective The MicroTCA.4(MTCA.4)standard systems have been widely used in large-scale scientific facilities such as synchrotron radiation light sources and FELs over the world,covering RF control,beam instrumentation,...Objective The MicroTCA.4(MTCA.4)standard systems have been widely used in large-scale scientific facilities such as synchrotron radiation light sources and FELs over the world,covering RF control,beam instrumentation,timing,machine protection,and so on.The MTCA.4 module management controller(MMC)realizes intelligent management of the boards in the chassis through bus protocol and system interaction.It is an important functional module in MTCA.4 standard system.Methods In order to meet the requirements of the large scientific facilities,an MMC module was designed and developed.This design can realize power management of Advanced Mezzanine Card(AMC)and Rear Transition Module(RTM)boards,as well as monitoring the temperature,voltage,and current during operation.The core part of this module is limited into an area of 3 cm 3 cm on the AMC board,leaving large space for subsequent development of functional circuit.Results An AMC board was developed to verify functions of the MMC.Test results indicate that this board is compatible with existing MTCA.4 standard system.Conclusions This MMC solution can be directly and modularly applied to the design of MTCA.4 standard hardware.展开更多
In this paper we present an attack on 30-round SIMON64, which improves the best results on SIMON64 by 1 round. We use a 23-round differential characteristic which was proposed by Itai et al in 2015 to construct a 30-r...In this paper we present an attack on 30-round SIMON64, which improves the best results on SIMON64 by 1 round. We use a 23-round differential characteristic which was proposed by Itai et al in 2015 to construct a 30-round extended differential characteristized by adding 4 rounds on the top and 3 round on the bottom. Furthermore, we utilize all of the sufficient bit-conditions of the 30-round differential to compute a set of corresponding subkeys. Then we distribute the plaintext pairs over the 286 lists corresponding to the 86-bit subkeys. If a list contains two or more pairs, we regard the subkeys corresponding to the list as candidate subkeys. The time complexity of our attack on 30-round SIMON64/96 (SIMON64/128) is 286.2 (21182) with a success probability of 0.61, while the data complexity and the memory complexity are 263.3 and 290 bytes, respectively.展开更多
基金funded by the National Natural Science Foundation of China(No.11675174,No.11805219).Author informa。
文摘Objective The MicroTCA.4(MTCA.4)standard systems have been widely used in large-scale scientific facilities such as synchrotron radiation light sources and FELs over the world,covering RF control,beam instrumentation,timing,machine protection,and so on.The MTCA.4 module management controller(MMC)realizes intelligent management of the boards in the chassis through bus protocol and system interaction.It is an important functional module in MTCA.4 standard system.Methods In order to meet the requirements of the large scientific facilities,an MMC module was designed and developed.This design can realize power management of Advanced Mezzanine Card(AMC)and Rear Transition Module(RTM)boards,as well as monitoring the temperature,voltage,and current during operation.The core part of this module is limited into an area of 3 cm 3 cm on the AMC board,leaving large space for subsequent development of functional circuit.Results An AMC board was developed to verify functions of the MMC.Test results indicate that this board is compatible with existing MTCA.4 standard system.Conclusions This MMC solution can be directly and modularly applied to the design of MTCA.4 standard hardware.
基金Supported by the National Natural Science Foundation of China(61373142,61572125)Dissertation Innovation Funds(112-06-0019025)
文摘In this paper we present an attack on 30-round SIMON64, which improves the best results on SIMON64 by 1 round. We use a 23-round differential characteristic which was proposed by Itai et al in 2015 to construct a 30-round extended differential characteristized by adding 4 rounds on the top and 3 round on the bottom. Furthermore, we utilize all of the sufficient bit-conditions of the 30-round differential to compute a set of corresponding subkeys. Then we distribute the plaintext pairs over the 286 lists corresponding to the 86-bit subkeys. If a list contains two or more pairs, we regard the subkeys corresponding to the list as candidate subkeys. The time complexity of our attack on 30-round SIMON64/96 (SIMON64/128) is 286.2 (21182) with a success probability of 0.61, while the data complexity and the memory complexity are 263.3 and 290 bytes, respectively.