We study the electronic properties of CuAlO2 doped with S by the first principles calculations and find that the band gap of CuAlO2 is reduced after the doping.At the same time,the effective masses are also reduced an...We study the electronic properties of CuAlO2 doped with S by the first principles calculations and find that the band gap of CuAlO2 is reduced after the doping.At the same time,the effective masses are also reduced and the density of states could cross the Fermi level.These results show that the conductivity of CuAlO2 could be enhanced by doping the impurities of S,which needs to be further studied.展开更多
基金supported by the National Laboratory of Solid State Microstructures (Grant No. 2010YJ07)
文摘We study the electronic properties of CuAlO2 doped with S by the first principles calculations and find that the band gap of CuAlO2 is reduced after the doping.At the same time,the effective masses are also reduced and the density of states could cross the Fermi level.These results show that the conductivity of CuAlO2 could be enhanced by doping the impurities of S,which needs to be further studied.