采用来源广、无毒、可生物降解的海藻酸钠(SA)对玉米淀粉(CSt)进行交联改性,制备海藻酸钠改性淀粉(SA-CSt),并研究了其对溶液中亚甲基蓝的吸附性能。结果表明,在SA加入量为4g/10g CSt,交联剂POCl3加入量为0.09mL/10 g CSt、反应温度为3...采用来源广、无毒、可生物降解的海藻酸钠(SA)对玉米淀粉(CSt)进行交联改性,制备海藻酸钠改性淀粉(SA-CSt),并研究了其对溶液中亚甲基蓝的吸附性能。结果表明,在SA加入量为4g/10g CSt,交联剂POCl3加入量为0.09mL/10 g CSt、反应温度为30℃、反应时间为1.5h条件下制备的絮凝剂SA-CSt具有最佳的亚甲基蓝吸附性能。当处理50mL浓度为50mg/L亚甲基蓝溶液时,在温度为30℃、时间为10min、絮凝剂SA-CSt加入量为0.075 g时,亚甲基蓝脱色率达97.6%,吸附量达32.53mg/g。展开更多
The extraction of strontium ions using DCH18C6 as the extractant and various ionic liquids (ILs) as solvents has been investigated. The distribution ratio of Sr2+ can reach as high as 103 under certain conditions, muc...The extraction of strontium ions using DCH18C6 as the extractant and various ionic liquids (ILs) as solvents has been investigated. The distribution ratio of Sr2+ can reach as high as 103 under certain conditions, much larger than that in DCH18C6/n-octanol system. The extraction capacity depends greatly on the structure of ionic liquids. In IIs-based extraction systems, the extraction efficiency of strontium ions is reduced by increasing the concentration of nitric acid and can also be influenced directly by the presence of Na+ and K+ in the aqueous phase. It is confirmed that the extraction proceeds mainly via a cation-exchange mechanism.展开更多
The extraction of thorium(IV) was investigated using two types of W/O microemulsion,one of which was formed by a surface-active saponified extractant sodium bis(2-ethylhexyl) phosphate(NaDEHP) and the other was formed...The extraction of thorium(IV) was investigated using two types of W/O microemulsion,one of which was formed by a surface-active saponified extractant sodium bis(2-ethylhexyl) phosphate(NaDEHP) and the other was formed by a mixture of an anionic surfactant sodium bis(2-ethylhexyl) sulfosuccinate(AOT) and an extractant bis(2-ethylhexyl)phosphoric acid(HDEHP) as the cosurfactant.The extraction capacities of the above two systems were higher than that of the HDEHP extraction system.High concentration of NaNO 3 showed no influence on the extraction in the NaDEHP based W/O microemulsion system,whilst reduced the extractability in the AOT-HDEHP W/O microemulsion system.The mechanism in acidic condition was demonstrated by the log-log plot method.The structure of the aggregations and the water content in the organic phase after extraction were measured by dynamic light scattering and Karl Fischer water titration,respectively.It was found that NaDEHP based W/O microemulsion broke up after extraction,while AOT-HDEHP W/O microemulsion was reserved.展开更多
文摘采用来源广、无毒、可生物降解的海藻酸钠(SA)对玉米淀粉(CSt)进行交联改性,制备海藻酸钠改性淀粉(SA-CSt),并研究了其对溶液中亚甲基蓝的吸附性能。结果表明,在SA加入量为4g/10g CSt,交联剂POCl3加入量为0.09mL/10 g CSt、反应温度为30℃、反应时间为1.5h条件下制备的絮凝剂SA-CSt具有最佳的亚甲基蓝吸附性能。当处理50mL浓度为50mg/L亚甲基蓝溶液时,在温度为30℃、时间为10min、絮凝剂SA-CSt加入量为0.075 g时,亚甲基蓝脱色率达97.6%,吸附量达32.53mg/g。
基金Supported by the National Natural Science Foundation of China (Grant No. 20871009)
文摘The extraction of strontium ions using DCH18C6 as the extractant and various ionic liquids (ILs) as solvents has been investigated. The distribution ratio of Sr2+ can reach as high as 103 under certain conditions, much larger than that in DCH18C6/n-octanol system. The extraction capacity depends greatly on the structure of ionic liquids. In IIs-based extraction systems, the extraction efficiency of strontium ions is reduced by increasing the concentration of nitric acid and can also be influenced directly by the presence of Na+ and K+ in the aqueous phase. It is confirmed that the extraction proceeds mainly via a cation-exchange mechanism.
基金supported by National Natural Science Foundation of China(20871009)the Fundamental Research Funds for the Central Universities
文摘The extraction of thorium(IV) was investigated using two types of W/O microemulsion,one of which was formed by a surface-active saponified extractant sodium bis(2-ethylhexyl) phosphate(NaDEHP) and the other was formed by a mixture of an anionic surfactant sodium bis(2-ethylhexyl) sulfosuccinate(AOT) and an extractant bis(2-ethylhexyl)phosphoric acid(HDEHP) as the cosurfactant.The extraction capacities of the above two systems were higher than that of the HDEHP extraction system.High concentration of NaNO 3 showed no influence on the extraction in the NaDEHP based W/O microemulsion system,whilst reduced the extractability in the AOT-HDEHP W/O microemulsion system.The mechanism in acidic condition was demonstrated by the log-log plot method.The structure of the aggregations and the water content in the organic phase after extraction were measured by dynamic light scattering and Karl Fischer water titration,respectively.It was found that NaDEHP based W/O microemulsion broke up after extraction,while AOT-HDEHP W/O microemulsion was reserved.