期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于马氏距离的联邦卡尔曼滤波在SINS/SRS/CNS导航中的应用 被引量:11
1
作者 高社生 洪根元 +1 位作者 高广乐 高兵兵 《中国惯性技术学报》 EI CSCD 北大核心 2021年第2期141-146,共6页
可靠的导航信息是实现飞行器精准控制的重要条件。为提高SINS/SRS/CNS组合导航系统的可靠性与精度,提出了一种基于马氏距离的自适应联邦卡尔曼滤波算法(MD-AFKF)。在子系统传感器异常而导致产生异常量测信息时,采用基于马氏距离的噪声... 可靠的导航信息是实现飞行器精准控制的重要条件。为提高SINS/SRS/CNS组合导航系统的可靠性与精度,提出了一种基于马氏距离的自适应联邦卡尔曼滤波算法(MD-AFKF)。在子系统传感器异常而导致产生异常量测信息时,采用基于马氏距离的噪声估计方法适时调整子系统量测噪声统计特性,同时通过在信息融合和分配阶段引入自适应融合系数与分配系数,进一步衡量各子滤波器的滤波效果并调节其协方差阵,减少不准确的子滤波器估计对主滤波器的污染。最后通过仿真验证,相较于传统联邦卡尔曼滤波算法,基于马氏距离的自适应联邦卡尔曼滤波在传感器出现量测异常时,其速度和位置精度均提高了50%以上,提高了导航系统的精确性和稳定性。 展开更多
关键词 联邦卡尔曼滤波 传感器故障 容错能力 组合导航 马氏距离
下载PDF
渐消SPRT在SINS/CNS/SRS导航系统软故障诊断中的应用 被引量:5
2
作者 高广乐 高社生 +1 位作者 彭旭 胡高歌 《中国惯性技术学报》 EI CSCD 北大核心 2020年第6期834-840,共7页
为提高导航系统的可靠性,实时的故障诊断与隔离十分必要。序贯概率比检验(SPRT)对传感器中缓慢增长的软故障具有较高的灵敏度,但该方法却存在故障检测延迟甚至无法检测故障结束的缺陷,造成故障的漏警和误警。对SPRT在故障检测中存在的... 为提高导航系统的可靠性,实时的故障诊断与隔离十分必要。序贯概率比检验(SPRT)对传感器中缓慢增长的软故障具有较高的灵敏度,但该方法却存在故障检测延迟甚至无法检测故障结束的缺陷,造成故障的漏警和误警。对SPRT在故障检测中存在的缺陷进行了分析并提出了一种渐消SPRT方法。渐消SPRT方法通过引入渐消因子,降低了历史信息对故障时刻统计量变化率与统计量的影响,进一步增强SPRT对故障的灵敏度,从而实现降低故障检测延迟并避免SPRT无法检测故障结束的问题。最后基于捷联惯导/天文/光谱红移(SINS/CNS/SRS)组合导航系统,进行了导航系统实施故障诊断仿真验证。仿真结果表明相比于SPRT,渐消SPRT能够检测到缓变故障的结束并将故障开始时刻的检测延迟降低了41%,极大地提高了SINS/CNS/SRS组合导航系统的实时估计精度与可靠性。在实时导航系统中,渐消SPRT能够起到良好的软故障检测与隔离作用,保证了系统的稳定性。 展开更多
关键词 故障检测 序贯概率比检验 渐消因子 光谱红移导航 组合导航
下载PDF
考虑目标期望摧毁概率的多无人机任务分配方法 被引量:4
3
作者 周谦 高社生 +2 位作者 高朝辉 夏娟 洪根元 《西北工业大学学报》 EI CAS CSCD 北大核心 2021年第3期617-623,共7页
针对侦查无人机(reconnaissance unmanned aerial vehicle,RUAV)/攻击型无人机(unmanned combat aerial vehicle,UCAV)对目标作战的任务分配问题,提出了一种考虑目标期望摧毁概率的高效分配方法。该方法在以摧毁目标价值总和最大为目标... 针对侦查无人机(reconnaissance unmanned aerial vehicle,RUAV)/攻击型无人机(unmanned combat aerial vehicle,UCAV)对目标作战的任务分配问题,提出了一种考虑目标期望摧毁概率的高效分配方法。该方法在以摧毁目标价值总和最大为目标的基础上,改进设计了模型的收益函数以及约束条件。模型中加入调节因子实现资源的均衡分配;引入目标期望摧毁概率作为约束条件,防止资源的过度分配。随后,设计了基于边缘受益最大化的贪婪算法对所提模型进行求解。仿真结果表明,改进后的模型算法在实现实时性任务分配的基础上,既满足作战效能又提高了经济效能。 展开更多
关键词 多无人机 期望摧毁概率 任务分配 边缘受益
下载PDF
Tightly coupled INS/CNS/spectral redshift integrated navigation system with the aid of redshift error measurement
4
作者 gao GuangLe gao shesheng +2 位作者 HU gaoGe ZHONG YongMin PENG Xu 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2023年第9期2597-2610,共14页
The integration of an inertial navigation system(INS) and a celestial navigation system(CNS) has the superiority of high autonomy. However, its reliability and accuracy are permanently impaired under poor observation ... The integration of an inertial navigation system(INS) and a celestial navigation system(CNS) has the superiority of high autonomy. However, its reliability and accuracy are permanently impaired under poor observation conditions. To address this issue, the present paper proposes a tightly coupled INS/CNS/spectral redshift(SRS) integration framework based on the spectral redshift error measurement. In the proposed method, a spectral redshift error measurement equation is investigated and embedded in the traditional tightly coupled INS/CNS integrated navigation system to achieve better anti-interference under complicated circumstances. Subsequently, the inaccurate redshift estimation from the low signal-to-noise ratio spectrum is considered in the integrated system, and an improved chi-square test-based covariance estimation method is incorporated in the federated Kalman filter, allowing to deal with measurement outliers caused by the inaccurate redshift estimation but not influencing the effect of other correct redshift measurements in suppressing the error of the navigation parameter on the filtering solution. Simulations and comprehensive analyses demonstrate that the proposed tightly coupled INS/CNS/SRS integrated navigation system can effectively handle outliers and outages under hostile observation conditions, resulting in improved performance. 展开更多
关键词 INS/CNS integrated navigation spectral redshift navigation spectral redshift error measurement equation inaccurate spectral redshift FAULT-TOLERANCE
原文传递
Random Weighting Estimation Method for Dynamic Navigation Positioning 被引量:14
5
作者 gao shesheng gao Yi +1 位作者 ZHONG Yongmin WEI Wenhui 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2011年第3期318-323,共6页
This paper presents a new random weighting estimation method for dynamic navigation positioning. This method adopts the concept of random weighting estimation to estimate the covariance matrices of system state noises... This paper presents a new random weighting estimation method for dynamic navigation positioning. This method adopts the concept of random weighting estimation to estimate the covariance matrices of system state noises and observation noises for controlling the disturbances of singular observations and the kinematic model errors. It satisfies the practical requirements of the residual vector and innovation vector to sufficiently utilize observation information, thus weakening the disturbing effect of the kinematic model error and observation model error on the state parameter estimation. Theories and algorithms of random weighting estimation are established for estimating the covariance matrices of observation residual vectors and innovation vec- tors. This random weighting estimation method provides an effective solution for improving the positioning accuracy in dynamic navigation. Experimental results show that compared with the Kalman filtering, the extended Kalman filtering and the adaptive windowing filtering, the proposed method can adaptively determine the covariance matrices of observation error and state error, effectively resist the disturbances caused by system error and observation error, and significantly improve the positioning accu- racy for dynamic navigation. 展开更多
关键词 ESTIMATION NAVIGATION ERROR random weighting estimation dynamic navigation positioning covariance matrix kinematic model error observation model error
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部