Chromium acetylacetonate and bis(diphenylphosphino)isopropylamine were coordinated in situ and supported on methylaluminoxane-modified silica. The catalyst structure and effects of reaction temperature, reaction press...Chromium acetylacetonate and bis(diphenylphosphino)isopropylamine were coordinated in situ and supported on methylaluminoxane-modified silica. The catalyst structure and effects of reaction temperature, reaction pressure and Al/Cr molar ratio on ethylene tetramerization were investigated in detail. Chromium was uniformly and firmly immobilized on the support and could not be leached off by methylaluminoxane. The supported catalyst, upon being activated with methylaluminoxane, exhibited catalytic activity of 1.70×107 g/(mol Cr·h) for ethylene tetramerization to form 1-octene at a reaction temperatures of 80 ℃, a pressure of 2.0 MPa and an Al/Cr molar ratio of 300. The supported catalyst presented a good tolerance to high temperature.展开更多
A facile and user friendly technique to immobilize the late-transition metal complexes on spherical MgCl2/SiO2/THF support has been developed. The spherical MgCl2/SiO2/THF-supported late-transition metal catalysts 2,6...A facile and user friendly technique to immobilize the late-transition metal complexes on spherical MgCl2/SiO2/THF support has been developed. The spherical MgCl2/SiO2/THF-supported late-transition metal catalysts 2,6-bis-[1-(2,6-dimethylphenylimino)ethyl]pyridine iron(II) dichloride(SC-A) and 1,4-bis(2,6-dimethylphenyl)- acenaphthene diimine nickel(II) dibromide(SC-B) for ethylene polymerization has been prepared by spray-drying technique using tetrahydrofuran suspension containing MgCl2, SiO2 and late-transition metal complexes. The catalysts were characterized by BET, XRD, SEM and the polymers were analyzed using GPC, DSC and 13C-NMR. The test results show that spray-drying is a very effective method for immobilizing late-transition metal catalysts for ethylene polymerization. Among six kinds of cocatalysts for olefin polymerization, TMA and TEA were confirmed to be more effective than other compounds for the ethylene polymerization system using the catalyst SC-A. For the case of the catalyst SC-B, DEAC showed the best performance as cocatalysts in ethylene polymerization. The replication of the catalyst morphology was found in the resultant polyethylene.展开更多
The synthesis and characterization of a novel trinuclear diphosphinoamine ligand 2 are reported. The ligand combined with Cr(III), activated with methylaluminoxane, lead to highly active and long-lifetime catalytic sy...The synthesis and characterization of a novel trinuclear diphosphinoamine ligand 2 are reported. The ligand combined with Cr(III), activated with methylaluminoxane, lead to highly active and long-lifetime catalytic systems for the tetramerization of ethylene to form 1-octene. The effects of reaction temperature, reaction pressure, molar ratio of Al/Cr and bis(diphenylphosphino)amine/Cr on the catalytic activity and product selectivity were studied. Compared with its mononuclear analogue 1, ligand 2 showed a higher catalytic activity and longer lifetime for ethylene tetramerization in the presence of methylaluminoxane as cocatalyst. High molecular weight polyethylene was generated as a by-product with extremely broad molecular weight distributions.展开更多
基金supported by the National Natural Science Foundation of China (U1162114)the PetroChina Innovation Foundation (2012D-5006-0501)+2 种基金the Tianjin Municipal Education Commission of China (20110505)the Natural Science Foundation of Tianjin (12JCQNJC06000)the Program for New Century Excellent Talents in University (NCET-07-0142)
文摘Chromium acetylacetonate and bis(diphenylphosphino)isopropylamine were coordinated in situ and supported on methylaluminoxane-modified silica. The catalyst structure and effects of reaction temperature, reaction pressure and Al/Cr molar ratio on ethylene tetramerization were investigated in detail. Chromium was uniformly and firmly immobilized on the support and could not be leached off by methylaluminoxane. The supported catalyst, upon being activated with methylaluminoxane, exhibited catalytic activity of 1.70×107 g/(mol Cr·h) for ethylene tetramerization to form 1-octene at a reaction temperatures of 80 ℃, a pressure of 2.0 MPa and an Al/Cr molar ratio of 300. The supported catalyst presented a good tolerance to high temperature.
基金supported by the National Natural Science Foundation of China (Grant No.U1162114)the Science Foundation of Tianjin University of Science & Technology (20090420)
文摘A facile and user friendly technique to immobilize the late-transition metal complexes on spherical MgCl2/SiO2/THF support has been developed. The spherical MgCl2/SiO2/THF-supported late-transition metal catalysts 2,6-bis-[1-(2,6-dimethylphenylimino)ethyl]pyridine iron(II) dichloride(SC-A) and 1,4-bis(2,6-dimethylphenyl)- acenaphthene diimine nickel(II) dibromide(SC-B) for ethylene polymerization has been prepared by spray-drying technique using tetrahydrofuran suspension containing MgCl2, SiO2 and late-transition metal complexes. The catalysts were characterized by BET, XRD, SEM and the polymers were analyzed using GPC, DSC and 13C-NMR. The test results show that spray-drying is a very effective method for immobilizing late-transition metal catalysts for ethylene polymerization. Among six kinds of cocatalysts for olefin polymerization, TMA and TEA were confirmed to be more effective than other compounds for the ethylene polymerization system using the catalyst SC-A. For the case of the catalyst SC-B, DEAC showed the best performance as cocatalysts in ethylene polymerization. The replication of the catalyst morphology was found in the resultant polyethylene.
基金supported by the National Natural Science Foundation of China (U1162114)the Program for New Century Excellent Talents in University+1 种基金the Program for New Century Excellent Talents in Heilongjiang Provincial University(NCET-06-010)the Science Foundation of Tianjin University of Science & Technology (20090420)
文摘The synthesis and characterization of a novel trinuclear diphosphinoamine ligand 2 are reported. The ligand combined with Cr(III), activated with methylaluminoxane, lead to highly active and long-lifetime catalytic systems for the tetramerization of ethylene to form 1-octene. The effects of reaction temperature, reaction pressure, molar ratio of Al/Cr and bis(diphenylphosphino)amine/Cr on the catalytic activity and product selectivity were studied. Compared with its mononuclear analogue 1, ligand 2 showed a higher catalytic activity and longer lifetime for ethylene tetramerization in the presence of methylaluminoxane as cocatalyst. High molecular weight polyethylene was generated as a by-product with extremely broad molecular weight distributions.