The paper has studied the influence of target material and thickness on energy and angular distributions of the protons generated by using an 800 rim, 60 fs, 0.24 J laser pulse to irradiate solid target foils. The res...The paper has studied the influence of target material and thickness on energy and angular distributions of the protons generated by using an 800 rim, 60 fs, 0.24 J laser pulse to irradiate solid target foils. The results show that the initial density and thickness of the targets will affect the formation of the acceleration sheath fields in the target normal direction. For the same target thickness, using lower density target materials can obtain a higher proton maximum energy. However, lower density targets tend to be deformed due to the shock waves launched by the laser pulses, making the proton spatial distribution more divergent.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 10935002,10925421,and 10974250)the National Basic Research Program of China (973 Program,Grant No.2007CB815102)
文摘The paper has studied the influence of target material and thickness on energy and angular distributions of the protons generated by using an 800 rim, 60 fs, 0.24 J laser pulse to irradiate solid target foils. The results show that the initial density and thickness of the targets will affect the formation of the acceleration sheath fields in the target normal direction. For the same target thickness, using lower density target materials can obtain a higher proton maximum energy. However, lower density targets tend to be deformed due to the shock waves launched by the laser pulses, making the proton spatial distribution more divergent.