Let R be a ring. A fight R-module M is called f-projective if Ext^1 (M, N) = 0 for any f-injective right R-module N. We prove that (F-proj,F-inj) is a complete cotorsion theory, where (F-proj (F-inj) denotes th...Let R be a ring. A fight R-module M is called f-projective if Ext^1 (M, N) = 0 for any f-injective right R-module N. We prove that (F-proj,F-inj) is a complete cotorsion theory, where (F-proj (F-inj) denotes the class of all f-projective (f-injective) right R-modules. Semihereditary rings, von Neumann regular rings and coherent rings are characterized in terms of f-projective modules and f-injective modules.展开更多
基金the Jiangsu Teachers University of Technology of China(No.Kyy06109)
文摘Let R be a ring. A fight R-module M is called f-projective if Ext^1 (M, N) = 0 for any f-injective right R-module N. We prove that (F-proj,F-inj) is a complete cotorsion theory, where (F-proj (F-inj) denotes the class of all f-projective (f-injective) right R-modules. Semihereditary rings, von Neumann regular rings and coherent rings are characterized in terms of f-projective modules and f-injective modules.