Simultaneous determination of several elements (U, Ta, Mn, Zr and W) with inductively coupled plasma atomic emission spectrometry (ICP-AES) in the presence of spectral interference was performed using chemometrics...Simultaneous determination of several elements (U, Ta, Mn, Zr and W) with inductively coupled plasma atomic emission spectrometry (ICP-AES) in the presence of spectral interference was performed using chemometrics methods. True comparison between artificial neural network (ANN) and partial least squares regression (PLS) for simultaneous determination in different degrees of overlap was investigated. The emission spectra were recorded at uranium analytical line (263.553 nm) with a 0.06 nm spectral window by ICP-AES. Principal component analysis was applied to data and scores on 5 dominant principal components were subjected to ANN. A 5-5-5 (input, hidden and output neurons) network was used with linear transfer function after both hidden and output layers. The PI,S model was trained with five latent variables and 20 samples in calibration set. The relative errors of predictions (REP) in test set were 3.75% and 3.56% for ANN and PLS respectively.展开更多
文摘Simultaneous determination of several elements (U, Ta, Mn, Zr and W) with inductively coupled plasma atomic emission spectrometry (ICP-AES) in the presence of spectral interference was performed using chemometrics methods. True comparison between artificial neural network (ANN) and partial least squares regression (PLS) for simultaneous determination in different degrees of overlap was investigated. The emission spectra were recorded at uranium analytical line (263.553 nm) with a 0.06 nm spectral window by ICP-AES. Principal component analysis was applied to data and scores on 5 dominant principal components were subjected to ANN. A 5-5-5 (input, hidden and output neurons) network was used with linear transfer function after both hidden and output layers. The PI,S model was trained with five latent variables and 20 samples in calibration set. The relative errors of predictions (REP) in test set were 3.75% and 3.56% for ANN and PLS respectively.