The support for multiple video streams in an ad-hoc wireless network requires appropriate routing and rate allocation measures ascertaining the set of links for transmitting each stream and the encoding rate of the vi...The support for multiple video streams in an ad-hoc wireless network requires appropriate routing and rate allocation measures ascertaining the set of links for transmitting each stream and the encoding rate of the video to be delivered over the chosen links. The routing and rate allocation procedures impact the sustained quality of each video stream measured as the mean squared error (MSE) distortion at the receiver, and the overall network congestion in terms of queuing delay per link. We study the trade-off between these two competing objectives in a convex optimization formulation, and discuss both centralized and dis- tributed solutions for joint routing and rate allocation for multiple streams. For each stream, the optimal allocated rate strikes a balance between the selfish motive of minimizing video distortion and the global good of minimizing network congestions, while the routes are chosen over the least-congested links in the network. In addition to detailed analysis, network simulation results using ns-2 are presented for studying the optimal choice of parameters and to confirm the effectiveness of the proposed measures.展开更多
基金Project (No. CCR-0325639) partially supported by the National Science Foundation, USA
文摘The support for multiple video streams in an ad-hoc wireless network requires appropriate routing and rate allocation measures ascertaining the set of links for transmitting each stream and the encoding rate of the video to be delivered over the chosen links. The routing and rate allocation procedures impact the sustained quality of each video stream measured as the mean squared error (MSE) distortion at the receiver, and the overall network congestion in terms of queuing delay per link. We study the trade-off between these two competing objectives in a convex optimization formulation, and discuss both centralized and dis- tributed solutions for joint routing and rate allocation for multiple streams. For each stream, the optimal allocated rate strikes a balance between the selfish motive of minimizing video distortion and the global good of minimizing network congestions, while the routes are chosen over the least-congested links in the network. In addition to detailed analysis, network simulation results using ns-2 are presented for studying the optimal choice of parameters and to confirm the effectiveness of the proposed measures.