期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于图学习的缺失脑网络生成及多模态融合诊断方法
1
作者 龚荣芳 黄麟雅 +1 位作者 朱旗 李胜荣 《数据采集与处理》 CSCD 北大核心 2024年第4期843-862,共20页
融合大脑结构和功能网络的多模态脑网络能够挖掘不同模态间的互补信息,有效提高癫痫等神经系统疾病的诊断准确率,在神经疾病诊断上具有优势。然而,由于多模态数据采集时间长、成本高,在实际应用中常面临模态缺失问题,导致可用数据量减少... 融合大脑结构和功能网络的多模态脑网络能够挖掘不同模态间的互补信息,有效提高癫痫等神经系统疾病的诊断准确率,在神经疾病诊断上具有优势。然而,由于多模态数据采集时间长、成本高,在实际应用中常面临模态缺失问题,导致可用数据量减少,模型的诊断精度和泛化能力下降。针对某一模态数据完全缺失问题,提出了基于图学习与循环一致生成对抗网络(Cycle-consistent generative adversarial networks,CycleGAN)的图CycleGAN方法。该方法通过引入图卷积神经网络与图注意力机制等图学习方法捕捉脑网络不同脑区间的特征信息,强化生成框架对图形式脑网络的特征提取能力,实现脑结构网络与功能网络的相互生成。此外,针对目前较少利用诊断结果评估生成数据质量的情况,提出了一种融合真实脑网络与生成脑网络的多模态融合分类模型,以进一步评估生成脑网络的有效性。在癫痫数据集上的实验结果表明,图CycleGAN方法能够有效利用已有的模态信息,实现缺失脑网络的生成。 展开更多
关键词 脑网络 模态缺失 图学习 生成对抗网络 模态补全 癫痫诊断
下载PDF
非小细胞肺癌肿瘤治疗电场电极阵列布局优化方法研究
2
作者 林喆 陈春晓 +3 位作者 肖月月 王亮 龚荣芳 沈俊 《生物医学工程研究》 2024年第2期136-143,共8页
为优化电极阵列排布,提高肿瘤治疗电场(tumor treating fields,TTF)强度,以更有效地抑制肿瘤增殖,本研究以群智能算法为基础,提出了电极感知自适应(electrode-perceptive adaptive,EPA)算法,旨在优化位于胸部区域的四组电极阵列的贴放位... 为优化电极阵列排布,提高肿瘤治疗电场(tumor treating fields,TTF)强度,以更有效地抑制肿瘤增殖,本研究以群智能算法为基础,提出了电极感知自适应(electrode-perceptive adaptive,EPA)算法,旨在优化位于胸部区域的四组电极阵列的贴放位置,提高治疗时的电场强度。EPA算法通过迭代搜索,动态地调整电极阵列布局,可最大化肿瘤部位的电场强度,从而提升TTF治疗效果。本研究对应用EPA算法得到的电极阵列优化布局与常规布局进行了仿真实验对比。实验结果表明,相较于常规布局,EPA优化布局可显著提高肿瘤部位的平均电场强度。 展开更多
关键词 肿瘤治疗电场 电极感知自适应算法 电极阵列 电场强度
下载PDF
Solving Severely Ill⁃Posed Linear Systems with Time Discretization Based Iterative Regularization Methods 被引量:1
3
作者 gong rongfang HUANG Qin 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2020年第6期979-994,共16页
Recently,inverse problems have attracted more and more attention in computational mathematics and become increasingly important in engineering applications.After the discretization,many of inverse problems are reduced... Recently,inverse problems have attracted more and more attention in computational mathematics and become increasingly important in engineering applications.After the discretization,many of inverse problems are reduced to linear systems.Due to the typical ill-posedness of inverse problems,the reduced linear systems are often illposed,especially when their scales are large.This brings great computational difficulty.Particularly,a small perturbation in the right side of an ill-posed linear system may cause a dramatical change in the solution.Therefore,regularization methods should be adopted for stable solutions.In this paper,a new class of accelerated iterative regularization methods is applied to solve this kind of large-scale ill-posed linear systems.An iterative scheme becomes a regularization method only when the iteration is early terminated.And a Morozov’s discrepancy principle is applied for the stop criterion.Compared with the conventional Landweber iteration,the new methods have acceleration effect,and can be compared to the well-known acceleratedν-method and Nesterov method.From the numerical results,it is observed that using appropriate discretization schemes,the proposed methods even have better behavior when comparing withν-method and Nesterov method. 展开更多
关键词 linear system ILL-POSEDNESS LARGE-SCALE iterative regularization methods ACCELERATION
下载PDF
Dynamic Domain Decomposition Method and Its Application on Nonlinear Problem
4
作者 gong rongfang JIANG Ke SUN Lelin 《Wuhan University Journal of Natural Sciences》 CAS 2010年第1期16-20,共5页
In this paper,domain decomposition method(DDM) for numerical solutions of mathematical physics equations is improved into dynamic domain decomposition method(DDDM) . The main feature of the DDDM is that the number... In this paper,domain decomposition method(DDM) for numerical solutions of mathematical physics equations is improved into dynamic domain decomposition method(DDDM) . The main feature of the DDDM is that the number,shape and volume of the sub-domains are all flexibly changeable during the iterations,so it suits well to be implemented on a reconfigurable parallel computing system. Convergence analysis of the DDDM is given,while an application approach to a weak nonlinear elliptic boundary value problem and a numerical experiment are discussed. 展开更多
关键词 dynamic domain decomposition reconfigurable parallel computing iterative benefit
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部