The availability of resources for economic activities differs between regions, and the importance of the resources is consequently observed to be different within regions compared to a global scale. With the current s...The availability of resources for economic activities differs between regions, and the importance of the resources is consequently observed to be different within regions compared to a global scale. With the current situation in Chinese mining industry and its statistic characteristics, the characterization procedures of abiotic resource in life cycle impact assessment (LCIA) have demonstrated certain limita-tions in the Chinese materials industry. The aim of this paper is to propose new characterization and normalization factors for abiotic resource depletion categories such as metals and non-renewable en- ergy resources in a Chinese context. The actual production of abiotic resources calculated by a modi- fied model is compared to the reserve base in line with the new national standard to determine char- acterization factors in equivalence units, with antimony as the reference mineral. The normalization factors are based on the total base reserves of the most important minerals in China. A case study on primary magnesium production using the Pidgeon process is used to compare LCIA results for abiotic resource categories that are between current LCIA factors and the new Chinese factors. These factors not only reflect the importance of abiotic resource with respect to region-specific resource depletion, but also can compare with the global factors.展开更多
A cradle-to-gate life cycle assessment was conducted in this paper to calculate the greenhouse gas (GHG) emissions, such as CO2, CH4, CF4 and C2F6 emissions, based on statistic data of Chinese aluminum industry of the...A cradle-to-gate life cycle assessment was conducted in this paper to calculate the greenhouse gas (GHG) emissions, such as CO2, CH4, CF4 and C2F6 emissions, based on statistic data of Chinese aluminum industry of the year 2003. The results showed that the GHG emissions for 1 t primary aluminum production was 21.6 t CO2 equivalent which is 70% higher than that of worldwide average level of the year 2000. The main contributors of emission were the alumina refining and aluminum smelting process accounting for 72% and 22% in accumulative emission, respectively. According to the development and application of new process technologies for primary aluminum production and the ‘target of energy-saving and emissions-reducing’ of Chinese government, the reduction potential of the GHG emissions for alumina and aluminum production were estimated. The results indicated that China aluminum industry would achieve the target of reducing about 25% GHG emissions by the end of 2010.展开更多
基金Supported by the National Natural Science Foundation of China (Grant No. 50525413)the National Key Technology R&D Program (Grant No. 2006BAE04B09-6)+1 种基金the Na-tional Basic Research Program of China ("973" Project) (Grant No. 2007CB613706)Beijing Natural Science Foundation (Grant No. 2081001)
文摘The availability of resources for economic activities differs between regions, and the importance of the resources is consequently observed to be different within regions compared to a global scale. With the current situation in Chinese mining industry and its statistic characteristics, the characterization procedures of abiotic resource in life cycle impact assessment (LCIA) have demonstrated certain limita-tions in the Chinese materials industry. The aim of this paper is to propose new characterization and normalization factors for abiotic resource depletion categories such as metals and non-renewable en- ergy resources in a Chinese context. The actual production of abiotic resources calculated by a modi- fied model is compared to the reserve base in line with the new national standard to determine char- acterization factors in equivalence units, with antimony as the reference mineral. The normalization factors are based on the total base reserves of the most important minerals in China. A case study on primary magnesium production using the Pidgeon process is used to compare LCIA results for abiotic resource categories that are between current LCIA factors and the new Chinese factors. These factors not only reflect the importance of abiotic resource with respect to region-specific resource depletion, but also can compare with the global factors.
基金Supported by the National Natural Science Foundation of China (Grant No. 50525413)National Basic Research Program of China (973 Program) (Grant No. 2007CB613706)Beijing Natural Science Foundation (Grant No. 2081001)
文摘A cradle-to-gate life cycle assessment was conducted in this paper to calculate the greenhouse gas (GHG) emissions, such as CO2, CH4, CF4 and C2F6 emissions, based on statistic data of Chinese aluminum industry of the year 2003. The results showed that the GHG emissions for 1 t primary aluminum production was 21.6 t CO2 equivalent which is 70% higher than that of worldwide average level of the year 2000. The main contributors of emission were the alumina refining and aluminum smelting process accounting for 72% and 22% in accumulative emission, respectively. According to the development and application of new process technologies for primary aluminum production and the ‘target of energy-saving and emissions-reducing’ of Chinese government, the reduction potential of the GHG emissions for alumina and aluminum production were estimated. The results indicated that China aluminum industry would achieve the target of reducing about 25% GHG emissions by the end of 2010.