The seven co-located sites of the Crustal Movement Observation Network of China(CMONOC) in Shanghai, Wuhan, Kunming, Beijing, Xi'an, Changchun, and Urumqi are equipped with Global Navigation Satellite System(GNSS...The seven co-located sites of the Crustal Movement Observation Network of China(CMONOC) in Shanghai, Wuhan, Kunming, Beijing, Xi'an, Changchun, and Urumqi are equipped with Global Navigation Satellite System(GNSS), very long baseline interferometry(VLBI), and satellite laser ranging(SLR) equipment. Co-location surveying of these sites was performed in 2012 and the accuracies of the solved tie vectors are approximately 5 mm.This paper proposes a mathematical model that handles the least squares adjustment of the 3D control network and calculates the tie vectors in one step, using all the available constraints in the adjustment. Using the new mathematical model, local tie vectors can be more precisely determined and their covariance more reasonably estimated.展开更多
The BeiDou Navigation Satellite System(BDS) provides Radio Navigation Service System(RNSS) as well as Radio Determination Service System(RDSS).RDSS users can obtain positioning by responding the Master Control Center(...The BeiDou Navigation Satellite System(BDS) provides Radio Navigation Service System(RNSS) as well as Radio Determination Service System(RDSS).RDSS users can obtain positioning by responding the Master Control Center(MCC) inquiries to signal transmitted via GEO satellite transponder.The positioning result can be calculated with elevation constraint by MCC.The primary error sources affecting the RDSS positioning accuracy are the RDSS signal transceiver delay,atmospheric trans-mission delay and GEO satellite position error.During GEO orbit maneuver,poor orbit forecast accuracy significantly impacts RDSS services.A real-time 3-D orbital correction method based on wide-area differential technique is raised to correct the orbital error.Results from the observation shows that the method can successfully improve positioning precision during orbital maneuver,independent from the RDSS reference station.This improvement can reach 50% in maximum.Accurate calibration of the RDSS signal transceiver delay precision and digital elevation map may have a critical role in high precise RDSS positioning services.展开更多
基金sponsored by the Crustal Movement Observation Network of China(CMONOC)partially supported by the Natural Science Foundation of China(41274035,41174023)
文摘The seven co-located sites of the Crustal Movement Observation Network of China(CMONOC) in Shanghai, Wuhan, Kunming, Beijing, Xi'an, Changchun, and Urumqi are equipped with Global Navigation Satellite System(GNSS), very long baseline interferometry(VLBI), and satellite laser ranging(SLR) equipment. Co-location surveying of these sites was performed in 2012 and the accuracies of the solved tie vectors are approximately 5 mm.This paper proposes a mathematical model that handles the least squares adjustment of the 3D control network and calculates the tie vectors in one step, using all the available constraints in the adjustment. Using the new mathematical model, local tie vectors can be more precisely determined and their covariance more reasonably estimated.
基金supported by the National Natural Science Foundation of China(Grant Nos.11033004 and 11203009)the Shanghai Committee of Science and Technology,China(Grant No.11ZR1443500)the Opening Project of Shanghai Key Laboratory of Space Navigation and Position Techniques(Grant No.12DZ2273300)
文摘The BeiDou Navigation Satellite System(BDS) provides Radio Navigation Service System(RNSS) as well as Radio Determination Service System(RDSS).RDSS users can obtain positioning by responding the Master Control Center(MCC) inquiries to signal transmitted via GEO satellite transponder.The positioning result can be calculated with elevation constraint by MCC.The primary error sources affecting the RDSS positioning accuracy are the RDSS signal transceiver delay,atmospheric trans-mission delay and GEO satellite position error.During GEO orbit maneuver,poor orbit forecast accuracy significantly impacts RDSS services.A real-time 3-D orbital correction method based on wide-area differential technique is raised to correct the orbital error.Results from the observation shows that the method can successfully improve positioning precision during orbital maneuver,independent from the RDSS reference station.This improvement can reach 50% in maximum.Accurate calibration of the RDSS signal transceiver delay precision and digital elevation map may have a critical role in high precise RDSS positioning services.