Background Cathepsin B plays an important role tumorigenesis: whether it plays a role in photoaged skin cathepsin B in skin photoaging in vivo and in vitro. n cell cycle, extracellular matrix changes and cutaneous re...Background Cathepsin B plays an important role tumorigenesis: whether it plays a role in photoaged skin cathepsin B in skin photoaging in vivo and in vitro. n cell cycle, extracellular matrix changes and cutaneous remains unknown. This study aimed to investigate the role of Methods The expressions of cathepsin B were compared with immunohistochemical methods in solar exposed skin and solar protected skin of six healthy Chinese volunteers. The mRNA and protein expression of cathepsin B in ultraviolet light A (UVA) induced premature senescence fibroblasts in vitro were detected by real-time reverse transcription polymerase chain reaction (RT-PCR) and Western blotting technique. Results Decreased expression of cathepsin B was observed in photoaged skin compared with that of the solar protected skin. In the UVA induced, premature senescence fibroblasts, a lower expression of cathepsin B was detected by Western blotting and a decreased synthesis of cathepsin B mRNA in the same cells was revealed by real-time RT-PCR. Conclusions The results demonstrated a significant negative correlation between skin photoaging and cathepsin B in vitro and in vivo. We propose that cathepsin B, besides matrix metalloproteinases and antioxidant enzymes, is involved in the process of skin photoaging in that it contributes to extracellular matrix remodelling and is a dominant protease in cellular apoptosis and senescence.展开更多
文摘Background Cathepsin B plays an important role tumorigenesis: whether it plays a role in photoaged skin cathepsin B in skin photoaging in vivo and in vitro. n cell cycle, extracellular matrix changes and cutaneous remains unknown. This study aimed to investigate the role of Methods The expressions of cathepsin B were compared with immunohistochemical methods in solar exposed skin and solar protected skin of six healthy Chinese volunteers. The mRNA and protein expression of cathepsin B in ultraviolet light A (UVA) induced premature senescence fibroblasts in vitro were detected by real-time reverse transcription polymerase chain reaction (RT-PCR) and Western blotting technique. Results Decreased expression of cathepsin B was observed in photoaged skin compared with that of the solar protected skin. In the UVA induced, premature senescence fibroblasts, a lower expression of cathepsin B was detected by Western blotting and a decreased synthesis of cathepsin B mRNA in the same cells was revealed by real-time RT-PCR. Conclusions The results demonstrated a significant negative correlation between skin photoaging and cathepsin B in vitro and in vivo. We propose that cathepsin B, besides matrix metalloproteinases and antioxidant enzymes, is involved in the process of skin photoaging in that it contributes to extracellular matrix remodelling and is a dominant protease in cellular apoptosis and senescence.