Neotectonism occurred intensively in the Bozhong depression in the Bohai Bay Basin, which was reflected vertically by dramatic subsidence and a number of uplifts and laterally by notable fault movements. This particul...Neotectonism occurred intensively in the Bozhong depression in the Bohai Bay Basin, which was reflected vertically by dramatic subsidence and a number of uplifts and laterally by notable fault movements. This particularity has resulted in the special petroleum geological conditions of the Bozhong depression which are different from those of adjacent lands. For example, the source rocks of the Shahejie Formation were overpressured and hydrocarbon generation occurred in the late stage; the Dongying Formation was deeply buried below the hydrocarbon-generating threshold, therefore there were sufficient oil sources. The rapid subsidence led to starved sedimentation of the Guantao Formation fine sandstone and the regional Minghuazhen Formation lacustrine shale, which formed the Neogene regional reservoir-caprock association. The active faults formed in the neotectonism became passages for oil to migrate from the Paleogene to Neogene. The traps formed by late fault activity and accompanied anticlines provided spaces for the formation of reservoirs. All the above factors match well with one another in the Bozhong depression, providing favorable conditions for the formation of a series of large oilfields in the region展开更多
To lower the CO 2 risk for hydrocarbon exploration in the west continental shelf of Yinggehai basin, South China Sea, we do attempt not only to know the CO 2 origins, but also to make an understanding of the degassi...To lower the CO 2 risk for hydrocarbon exploration in the west continental shelf of Yinggehai basin, South China Sea, we do attempt not only to know the CO 2 origins, but also to make an understanding of the degassing processes from the mantle and crust. Based on the stable carbon isotope ratios of CO 2 alone, the organic and inorganic CO 2 can be successively distinguished, but the formation conditions and mixing processes for inorganic CO 2 are still not clear. The relationships between lg[R(= 3He/ 4He)/R a(=1.386×10 -6)] and CO 2 content (%), CO 2/ 3He and δ 13C CO 2 have been employed, respectively, to obtain that the CO 2 gases in the reservoirs can be classified into three categories: (1) organic CO 2 with very low contents but contaminated by mantle-derived helium; (2) inorganic CO 2 gases with lower to higher contents being mixtures of crustal CO 2 with mantle-derived CO 2, the mantle- contributed percentage being in the range of 0 %-27 %, and (3) mainly crust-derived inorganic CO 2 gases being characterized by high contents (more than 50 %) and indicating the crustal addition by metamorphism of rich-in carbon rocks in basement. Nevertheless, some CO 2/ 3He ratios of organic CO 2 fall into the range 10 8-10 10, which made us inquire whether the CO 2/ 3He=(1-10)×10 9 can be the unique signature of magmatic CO 2 or not. All the observation of plutonic activities, fluid inclusion measurements in gas reservoirs, pre-stack depth/time seismic sections and the satellite infrared remote photography taken from Yinggehai basin, South China Sea, during Chichi earthquake in Taiwan on September 21, 1999, supports that the degassing processes are in a discontinuous mode, which may be triggered by igneous intrusion or extrusion, or earthquakes. In the central diapir zone of the basin, at least 3 to 4 orders of discharge of across-formational thermal fluid flows through fractures can be determined in different scales. The mantle degassing process may have a strong effect on overpressured system forming and outgassing in crust. However, it is very difficult to estimate the transferring rates for a special fractured zone at a specific time interval.展开更多
基金This project is supported by the NationM Natural Science Foundation of China(No.40238059).
文摘Neotectonism occurred intensively in the Bozhong depression in the Bohai Bay Basin, which was reflected vertically by dramatic subsidence and a number of uplifts and laterally by notable fault movements. This particularity has resulted in the special petroleum geological conditions of the Bozhong depression which are different from those of adjacent lands. For example, the source rocks of the Shahejie Formation were overpressured and hydrocarbon generation occurred in the late stage; the Dongying Formation was deeply buried below the hydrocarbon-generating threshold, therefore there were sufficient oil sources. The rapid subsidence led to starved sedimentation of the Guantao Formation fine sandstone and the regional Minghuazhen Formation lacustrine shale, which formed the Neogene regional reservoir-caprock association. The active faults formed in the neotectonism became passages for oil to migrate from the Paleogene to Neogene. The traps formed by late fault activity and accompanied anticlines provided spaces for the formation of reservoirs. All the above factors match well with one another in the Bozhong depression, providing favorable conditions for the formation of a series of large oilfields in the region
文摘To lower the CO 2 risk for hydrocarbon exploration in the west continental shelf of Yinggehai basin, South China Sea, we do attempt not only to know the CO 2 origins, but also to make an understanding of the degassing processes from the mantle and crust. Based on the stable carbon isotope ratios of CO 2 alone, the organic and inorganic CO 2 can be successively distinguished, but the formation conditions and mixing processes for inorganic CO 2 are still not clear. The relationships between lg[R(= 3He/ 4He)/R a(=1.386×10 -6)] and CO 2 content (%), CO 2/ 3He and δ 13C CO 2 have been employed, respectively, to obtain that the CO 2 gases in the reservoirs can be classified into three categories: (1) organic CO 2 with very low contents but contaminated by mantle-derived helium; (2) inorganic CO 2 gases with lower to higher contents being mixtures of crustal CO 2 with mantle-derived CO 2, the mantle- contributed percentage being in the range of 0 %-27 %, and (3) mainly crust-derived inorganic CO 2 gases being characterized by high contents (more than 50 %) and indicating the crustal addition by metamorphism of rich-in carbon rocks in basement. Nevertheless, some CO 2/ 3He ratios of organic CO 2 fall into the range 10 8-10 10, which made us inquire whether the CO 2/ 3He=(1-10)×10 9 can be the unique signature of magmatic CO 2 or not. All the observation of plutonic activities, fluid inclusion measurements in gas reservoirs, pre-stack depth/time seismic sections and the satellite infrared remote photography taken from Yinggehai basin, South China Sea, during Chichi earthquake in Taiwan on September 21, 1999, supports that the degassing processes are in a discontinuous mode, which may be triggered by igneous intrusion or extrusion, or earthquakes. In the central diapir zone of the basin, at least 3 to 4 orders of discharge of across-formational thermal fluid flows through fractures can be determined in different scales. The mantle degassing process may have a strong effect on overpressured system forming and outgassing in crust. However, it is very difficult to estimate the transferring rates for a special fractured zone at a specific time interval.