期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
MAP kinase gene STK1 is required for hyphal, conidial, and appressorial development, toxin biosynthesis, pathogenicity, and hypertonic stress response in the plant pathogenic fungus Setosphaeria turcica 被引量:7
1
作者 LI Po GONG Xiao-dong +7 位作者 JIA Hui FAN Yong-shan ZHANG Yun-feng CAO Zhi-yan HAO Zhi-min HAN Jian-min gu shou-qin DONG Jin-gao 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第12期2786-2794,共9页
The mitogen-activated protein kinase (MAPK), a key signal transduction component in the MAPK cascade pathway, regulates a variety of physiological activities in eukaryotes. However, little is known of the role MAPK ... The mitogen-activated protein kinase (MAPK), a key signal transduction component in the MAPK cascade pathway, regulates a variety of physiological activities in eukaryotes. However, little is known of the role MAPK plays in phytopathogenic fungi. In this research, we cloned the MAPK gene STK1 from the northern corn leaf blight pathogen Setosphaeria turcica and found that the gene shared high homology with the high osmolality glycerol (HOG) MAPK gene HOG1 of Saccharomy- ces cerevisiae. In addition, gene knockout technology was employed to investigate the function of STKI. Gene knockout mutants (KOs) were found to have altered hyphae morphology and no conidiogenesis, though they did show similar radial growth rate compared to the wild-type strain (WT). Furthermore, microscope observations indicated that STK1 KOs did not form normal appressoria at 48 h post-inoculation on a hydrophobic surface. STK1 KOs had reduced virulence, a significantly altered Helminthosporium turcicum (HT)-toxin composition, and diminished pathogenicity on the leaves of susceptible inbred corn OH43. Mycelium morphology appeared to be significantly swollen and the radial growth rates of STK1 KOs declined in comparison with WT under high osmotic stress. These results suggested that STK1 affects the hyphae development, conidiogenesis, and pathogenicity of S. turcica by regulating appressorium development and HT-toxin biosynthesis. Moreover, the gene appears to be involved in the hypertonic stress response in S. turcica. 展开更多
关键词 Setosphaeria turcica MAPK CONIDIOGENESIS HT-toxin PATHOGENICITY
下载PDF
Effects of MEK-Specific Inhibitor U0126 on the Conidial Germination,Appressorium Production,and Pathogenicity of Setosphaeria turcica 被引量:4
2
作者 FAN Yong-shan gu shou-qin +1 位作者 DONG Jin-gao DONG Bing-fang 《Agricultural Sciences in China》 CAS CSCD 2007年第1期78-85,共8页
Systemic studies on the effects of mitogen-activated protein kinase (MAPK) signal transduction pathway on the growth and development of Setosphaeria turcica is helpful not only in understanding the molecular mechani... Systemic studies on the effects of mitogen-activated protein kinase (MAPK) signal transduction pathway on the growth and development of Setosphaeria turcica is helpful not only in understanding the molecular mechanism of pathogenhost interaction but also in the effective control of the diseases caused by S. turcica. U0126, the specific MEK inhibitor, is used to treat S. turcica before the observation of the conidial germination, appressorium production, and pathogenicity of the pathogen. There is no significant effect of U0126 on the colony morphology and mycelium growth of the pathogen. After treatment with U0126, the growth of mycelium and conidia are normal, but the conidial germination, appressorium production, and pathogenicity of S. turcica on susceptible corn leaves are significantly inhibited. Under the definite concentration scope, an increase in U0126 concentration increases the inhibition degree of conidial germination and appressorium production, but the inhibition degree decreases with elongation of treatment time. The conidial germination, appressorium production, and pathogenicity of S. turcica on susceptible corn leaves are regulated by the MAPK pathway inhibited by U0126. 展开更多
关键词 Setosphaeria turcica MAPK U0126 conidial germination appressorium production PATHOGENICITY
下载PDF
Stk2,a Mitogen-Activated Protein Kinase from Setosphaeria turcica,Specifically Complements the Functions of the Fus3 and Kss1 of Saccharomyces cerevisiae in Filamentation,Invasive Growth,and Mating Behavior 被引量:3
3
作者 gu shou-qin YANG Yang +10 位作者 LI Po ZHANG Chang-zhi FAN Yu ZHANG Xiao-yu TIAN Lan HAO Zhi-min CAO Zhi-yan GONG Xiao-dong FAN Yong-shan HAN Jian-min DONG Jin-gao 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2013年第12期2209-2216,共8页
Setosphaeria turcica,an essential phytopathogenic fungus,is the primary cause of serious yield losses in corn; however,its pathogenic mechanism is poorly understood.We cloned STK2,a newly discovered mitogen-activated ... Setosphaeria turcica,an essential phytopathogenic fungus,is the primary cause of serious yield losses in corn; however,its pathogenic mechanism is poorly understood.We cloned STK2,a newly discovered mitogen-activated protein kinase gene with a deduced amino acid sequence that is 96% identical to MAK2 from Phaeosphaeria nodorum,56% identical to KSS1 and 57% identical to FUS3 from Saccharomyces cerevisiae.To deduce Stk2 function in S.turcica and to identify the genetic relationship between STK2 and KSS1/FUS3 from S.cerevisiae,a restructured vector containing the open reading frame of STK2 was transformed into a fus3/kss1 double deletion mutant of S.cerevisiae.The results show that the STK2 complementary strain clearly formed pseudohyphae and ascospores,and the strain grew on the surface of the medium after rinsing with sterile water and the characteristics of the complementary strain was the same as the wild-type strain.Moreover,STK2 complemented the function of KSS1 in filamentation and invasive growth,as well as the mating behavior of FUS3 in S.cerevisiae,however,its exact functions in S.turcica will be studied in the future research. 展开更多
关键词 Setosphaeria turcica MAPK FILAMENTATION invasive growth mating behavior
下载PDF
StKU80, a component in the NHEJ repair pathway, is involved in mycelial morphogenesis, conidiation, appressorium development, and oxidative stress reactions in Exserohilum turcicum 被引量:1
4
作者 GONG Xiao-dong LIU Yu-wei +4 位作者 BI Huan-huan YANG Xiao-rong HAN Jian-min DONG Jin-gao gu shou-qin 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第1期147-158,共12页
Homologous recombination(HR) and nonhomologous end joining(NHEJ) are considered the two main double-strand break(DSB) repair approaches in eukaryotes. Inhibiting the activities of the key component in NHEJ commonly en... Homologous recombination(HR) and nonhomologous end joining(NHEJ) are considered the two main double-strand break(DSB) repair approaches in eukaryotes. Inhibiting the activities of the key component in NHEJ commonly enhances the efficiency of targeted gene knockouts or affects growth and development in higher eukaryotes. However, little is known about the roles of the NHEJ pathway in foliar pathogens. Here we identified a gene designated St KU80, which encodes a putative DNA end-binding protein homologous to yeast Ku80, in the foliar pathogen Exserohilum turcicum. Conserved domain analysis showed that the typical domains VWA, Ku78 and Ku-PK-bind are usually present in Ku70/80 proteins in eukaryotes and are also present in St Ku80. Phylogenetic analysis indicated that St Ku80 is most closely related to Ku80(XP001802136.1) from Parastagonospora nodorum, followed by Ku80(AGF90044.1) from Monascus ruber. Furthermore, the gene knockout mutants ΔSt KU80-1 and ΔSt KU80-2 were obtained. These mutants displayed longer septas, thinner cell walls, smaller amounts of substances on cell wall surfaces, and more mitochondria per cell than the wild-type(WT) strain but similar HT-toxin activity. The mutants did not produce conidia and mature appressoria. On the other hand, the mutants were highly sensitive to H2O2, but not to ultraviolet radiation. In summary, the St KU80 plays devious roles in regulating the development of E. turcicum. 展开更多
关键词 Exserohilum turcicum PATHOGENICITY gene knockout growth and development
下载PDF
玉米LysM基因家族的全基因组鉴定及表达模式分析
5
作者 周贺 孟岩 +4 位作者 尤龙腾 魏淑珍 巩校东 谷守芹 刘玉卫 《玉米科学》 CAS CSCD 北大核心 2024年第5期23-31,共9页
为揭示LysM基因家族在玉米生长发育及抗病中的作用,利用生物信息学方法对玉米LysM基因家族成员进行鉴定,并对其蛋白理化性质、亚细胞定位、系统发育关系、基因启动子区的顺式作用元件、组织表达以及大斑病菌侵染过程中的表达模式进行分... 为揭示LysM基因家族在玉米生长发育及抗病中的作用,利用生物信息学方法对玉米LysM基因家族成员进行鉴定,并对其蛋白理化性质、亚细胞定位、系统发育关系、基因启动子区的顺式作用元件、组织表达以及大斑病菌侵染过程中的表达模式进行分析。结果表明,在玉米中共存在11个ZmLysM家族成员。通过生物信息学分析发现,ZmLysMs蛋白在质膜、叶绿体、胞外均有分布;ZmLysMs成员与单子叶植物水稻和小麦具有较近的亲缘关系;ZmLysMs成员的启动子序列存在多个激素响应、逆境胁迫响应和光响应元件;10个ZmLysMs成员在不同组织中表达,其中ZmLysM1、ZmLysM4和ZmLysM6呈组成性表达模式,ZmLysM10只在根组织中表达。ZmLysM2、ZmLysM6和ZmLysM7在玉米大斑病菌侵染后差异表达,推测其可能在响应大斑病菌侵染过程中发挥作用。 展开更多
关键词 玉米 LysM 发育 胁迫 表达模式
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部