Antarcticite, a mineral with composition CaCl2·6H2O and structure P321, is an ideal phase change material (PCM) due to the high energy storage density and good thermal conductivity. However, the existence of supe...Antarcticite, a mineral with composition CaCl2·6H2O and structure P321, is an ideal phase change material (PCM) due to the high energy storage density and good thermal conductivity. However, the existence of supercooling and incongruent melting would weaken its thermal properties and then hinder its application. In this paper, based on the cooling curve method and DSC measurement, we experimentally selected the minor SrCl2·6H2O as the nucleator and carboxyl methyl cellulose as the thickening agent, which could significantly reduce supercooling and partly restrain the incongruent melting. Moreover, we incorporated Antarcticite as PCM into building envelopes in four different cases, the simulation of the heat transfer processes showed that the temperature fluctuation could be reduced to about 2℃ in the best case.展开更多
文摘Antarcticite, a mineral with composition CaCl2·6H2O and structure P321, is an ideal phase change material (PCM) due to the high energy storage density and good thermal conductivity. However, the existence of supercooling and incongruent melting would weaken its thermal properties and then hinder its application. In this paper, based on the cooling curve method and DSC measurement, we experimentally selected the minor SrCl2·6H2O as the nucleator and carboxyl methyl cellulose as the thickening agent, which could significantly reduce supercooling and partly restrain the incongruent melting. Moreover, we incorporated Antarcticite as PCM into building envelopes in four different cases, the simulation of the heat transfer processes showed that the temperature fluctuation could be reduced to about 2℃ in the best case.