The interactions between groundwater depth and soil hydrological processes, play an important role in both arid and semi-arid ecosystems. The effect of groundwater depth on soil water variations were neglected or not ...The interactions between groundwater depth and soil hydrological processes, play an important role in both arid and semi-arid ecosystems. The effect of groundwater depth on soil water variations were neglected or not explicitly treated. In this paper, we combine a simulation experiment and a water flow module of HYDRUS-1D model to study the variation in soil evaporation under different groundwater depth conditions and the relationship between groundwater depth and evaporation efficiency in Horqin Sandy Land, China.The results showed that with an increase in groundwater depth, the evaporation of soil and the recharge of groundwater decrease. In this study, the groundwater recharge did not account for more than 21% of the soil evaporation for the depths of groundwater examined. The soil water content at 60 cm was less affected by the evaporation efficiency when the mean groundwater depth was 61 cm during the experimental period. In addition, the evaporation efficiency(the ratio of actual evaporation to potential evaporation) decreases with the increase in groundwater depth during the experiment. Furthermore, the soil evaporation was not affected by groundwater when the groundwater depth was deeper than 239 cm.展开更多
Nitrogen deposition imposes important impact on the function and the stability of forest carbon sequestration.This paper reviewed the research advances in the increasing response of forest carbon sequestration to niti...Nitrogen deposition imposes important impact on the function and the stability of forest carbon sequestration.This paper reviewed the research advances in the increasing response of forest carbon sequestration to nitiogen deposition, described the application prospects of stable carbon isotope technique in the research field.And finally this paper pointed out that,on the condition that nitrogen deposition rises,on the allocation of forest photosynthetic products and the change in soil carbon turnover rate are the two hotspots in the future carbon cycling research.展开更多
基金Under the auspices of the National Natural Science Foundation of China(No.31770755,31670712)Key Projects of Chinese Academy of Sciences(No.KFZD-SW-305)。
文摘The interactions between groundwater depth and soil hydrological processes, play an important role in both arid and semi-arid ecosystems. The effect of groundwater depth on soil water variations were neglected or not explicitly treated. In this paper, we combine a simulation experiment and a water flow module of HYDRUS-1D model to study the variation in soil evaporation under different groundwater depth conditions and the relationship between groundwater depth and evaporation efficiency in Horqin Sandy Land, China.The results showed that with an increase in groundwater depth, the evaporation of soil and the recharge of groundwater decrease. In this study, the groundwater recharge did not account for more than 21% of the soil evaporation for the depths of groundwater examined. The soil water content at 60 cm was less affected by the evaporation efficiency when the mean groundwater depth was 61 cm during the experimental period. In addition, the evaporation efficiency(the ratio of actual evaporation to potential evaporation) decreases with the increase in groundwater depth during the experiment. Furthermore, the soil evaporation was not affected by groundwater when the groundwater depth was deeper than 239 cm.
文摘Nitrogen deposition imposes important impact on the function and the stability of forest carbon sequestration.This paper reviewed the research advances in the increasing response of forest carbon sequestration to nitiogen deposition, described the application prospects of stable carbon isotope technique in the research field.And finally this paper pointed out that,on the condition that nitrogen deposition rises,on the allocation of forest photosynthetic products and the change in soil carbon turnover rate are the two hotspots in the future carbon cycling research.