Mammalian cell totipotency is a subject that has fascinated scientists for generations. A long lasting question whether some of the somatic cells retains totipotency was answered by the cloning of Dolly at the end of ...Mammalian cell totipotency is a subject that has fascinated scientists for generations. A long lasting question whether some of the somatic cells retains totipotency was answered by the cloning of Dolly at the end of the 20th century. The dawn of the 21st has brought forward great expectations in harnessing the power of totipotentcy in medicine. Through stem cell biology, it is possible to generate any parts of the human body by stem cell engineering. Considerable resources will be devoted to harness the untapped potentials of stem cells in the foreseeable future which may transform medicine as we know today. At the molecular level, totipotency has been linked to a singular transcription factor and its expression appears to define whether a cell should be totipotent. Named Oct4, it can activate or repress the expression of various genes. Curiously, very little is known about Oct4 beyond its ability to regulate gene expression. The mechanism by which Oct4 specifies totipotency remains entirely unresolved. In this review, we summarize the structure and function of Oct4 and address issues related to Oct4 function in maintaining totipotency or pluripotency of embryonic stem cells.展开更多
Nanog is a newly identified homeodomain gene that functions to sustain the pluripotency of embryonic stem cells.However,the molecular mechanism through which nanog regulates stem cell pluripotency remains unknown.Mous...Nanog is a newly identified homeodomain gene that functions to sustain the pluripotency of embryonic stem cells.However,the molecular mechanism through which nanog regulates stem cell pluripotency remains unknown.Mouse nanog encodes a polypeptide of 305 residues with a divergent homeodomain similar to those in the NK-2 family.The rest ofnanog contains no apparent homology to any known proteins characterized so far.It is hypothesized that nanog encodes a transcription factor that regulates stem cell pluripotency by switching on or off target genes.To test this hypothesis,we constructed fusion proteins between nanog and DNA binding domains of the yeast transcription factor Gal4 and tested the transactivation potentials of these constructs.Our data demonstrate that both regions N- and C- terminal to the homeodomain have transcription activities.Despite the fact that it contains no apparent transactivation motifs,the C-terminal domain is about 7 times as active as the N-terminal one.This unique arrangement of dual transactivators may confer nanog the flexibility and specificity to regulate downstream genes critical for both pluripotency and differentiation of stem cells.展开更多
文摘Mammalian cell totipotency is a subject that has fascinated scientists for generations. A long lasting question whether some of the somatic cells retains totipotency was answered by the cloning of Dolly at the end of the 20th century. The dawn of the 21st has brought forward great expectations in harnessing the power of totipotentcy in medicine. Through stem cell biology, it is possible to generate any parts of the human body by stem cell engineering. Considerable resources will be devoted to harness the untapped potentials of stem cells in the foreseeable future which may transform medicine as we know today. At the molecular level, totipotency has been linked to a singular transcription factor and its expression appears to define whether a cell should be totipotent. Named Oct4, it can activate or repress the expression of various genes. Curiously, very little is known about Oct4 beyond its ability to regulate gene expression. The mechanism by which Oct4 specifies totipotency remains entirely unresolved. In this review, we summarize the structure and function of Oct4 and address issues related to Oct4 function in maintaining totipotency or pluripotency of embryonic stem cells.
基金supported in part by the Tsinghua University BaiRen Scholar Program,NSFC 30270287the 973 Project--2001CB5101 from The Ministry of Science and Technology of China.
文摘Nanog is a newly identified homeodomain gene that functions to sustain the pluripotency of embryonic stem cells.However,the molecular mechanism through which nanog regulates stem cell pluripotency remains unknown.Mouse nanog encodes a polypeptide of 305 residues with a divergent homeodomain similar to those in the NK-2 family.The rest ofnanog contains no apparent homology to any known proteins characterized so far.It is hypothesized that nanog encodes a transcription factor that regulates stem cell pluripotency by switching on or off target genes.To test this hypothesis,we constructed fusion proteins between nanog and DNA binding domains of the yeast transcription factor Gal4 and tested the transactivation potentials of these constructs.Our data demonstrate that both regions N- and C- terminal to the homeodomain have transcription activities.Despite the fact that it contains no apparent transactivation motifs,the C-terminal domain is about 7 times as active as the N-terminal one.This unique arrangement of dual transactivators may confer nanog the flexibility and specificity to regulate downstream genes critical for both pluripotency and differentiation of stem cells.