期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Fixed points of n-valued maps on surfaces and the Wecken property a configuration space approach 被引量:1
1
作者 GONCALVES Daciberg Lima guaschi john 《Science China Mathematics》 SCIE CSCD 2017年第9期1561-1574,共14页
Abstract In this paper, we explore the fixed point theory of n-vaiued maps using configuration spaces and braid groups, focusing on two fundamental problems, the Wecken property, and the computation of the Nielsen num... Abstract In this paper, we explore the fixed point theory of n-vaiued maps using configuration spaces and braid groups, focusing on two fundamental problems, the Wecken property, and the computation of the Nielsen number. We show that the projective plane (resp. the 2-sphere S2) has the Wecken property for n-valued maps for all n ∈N (resp. all n ≥ 3). In the case n = 2 and S2, we prove a partial result about the Wecken property. We then describe the Nielsen number of a non-split n-valued map φ : X → X of an orientable, compact manifold without boundary in terms of the Nielsen coincidence numbers of a certain finite covering q: )→ X with a subset of the coordinate maps of a lift of the n-valued split map → q : →X. 展开更多
关键词 multivalued maps fixed points Wecken property Nielsen numbers BRAIDS configuration space
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部