The forming ability of quasicrystal phase has a relationship with the atomic bond factors based on differences in atom size and electron factors.Usually,those factors or their combination are used to describe the form...The forming ability of quasicrystal phase has a relationship with the atomic bond factors based on differences in atom size and electron factors.Usually,those factors or their combination are used to describe the forming ability,stability of alloys,etc.In this paper,the quasicrystal alloy forming abilities for the fifth and sixth transition metals(Y,Zr,Nb,Mo,Ru,Rh,Pd and La,Hf,Ta,W,Re,Os,Ir,Pt) based alloys have been studied by the size factor and the atomic parametric function.It has been found that an ellipse curve can be used to separate the quasicrystal formed area from the informed area in the size factor and atomic parameters functional graph.The ellipse curve can be defined by an equation(x-m)2/c2+(y?n)2/d2=1.The overall reliabilities for the model are up to 97.4% and 95.5% for the fifth and the sixth transition metals based quasicrystal alloys,respectively.Also,the ellipse parameters m,n,c and d can be paraphrased by some appropriate parameters for each host metal.展开更多
As the potential applications of carbon nanotubes in the field of electroluminescence, elements yttrium and europium were introduced to modify the emission properties of double-walled carbon nanotubes (DWNTs) to obtai...As the potential applications of carbon nanotubes in the field of electroluminescence, elements yttrium and europium were introduced to modify the emission properties of double-walled carbon nanotubes (DWNTs) to obtain higher efficacy and other properties. The light emission spectrum of the Y-Eu-doped DWNT filament is suppressed in the near-infrared range, while enhanced in the mid-infrared range. The doped DWNT filament can reach higher efficacy than that of the pure DWNT filament at the same input power and can work stably as long as 5000 h at 12 V. These filaments could be useful for the light sources with special functions, such as infrared light sources operated at low input power.展开更多
基金Supported by the Scientific Research Fund of Hunan Provincial Education Department
文摘The forming ability of quasicrystal phase has a relationship with the atomic bond factors based on differences in atom size and electron factors.Usually,those factors or their combination are used to describe the forming ability,stability of alloys,etc.In this paper,the quasicrystal alloy forming abilities for the fifth and sixth transition metals(Y,Zr,Nb,Mo,Ru,Rh,Pd and La,Hf,Ta,W,Re,Os,Ir,Pt) based alloys have been studied by the size factor and the atomic parametric function.It has been found that an ellipse curve can be used to separate the quasicrystal formed area from the informed area in the size factor and atomic parameters functional graph.The ellipse curve can be defined by an equation(x-m)2/c2+(y?n)2/d2=1.The overall reliabilities for the model are up to 97.4% and 95.5% for the fifth and the sixth transition metals based quasicrystal alloys,respectively.Also,the ellipse parameters m,n,c and d can be paraphrased by some appropriate parameters for each host metal.
基金Supported by the National Natural Science Foundation of China (Grant No. 50672047)
文摘As the potential applications of carbon nanotubes in the field of electroluminescence, elements yttrium and europium were introduced to modify the emission properties of double-walled carbon nanotubes (DWNTs) to obtain higher efficacy and other properties. The light emission spectrum of the Y-Eu-doped DWNT filament is suppressed in the near-infrared range, while enhanced in the mid-infrared range. The doped DWNT filament can reach higher efficacy than that of the pure DWNT filament at the same input power and can work stably as long as 5000 h at 12 V. These filaments could be useful for the light sources with special functions, such as infrared light sources operated at low input power.