Objective To study the effect of electromagnetic pulse (EMP) exposure on permeability of in vitro blood-brain-barrier (BBB) model. Methods An in vitro BBB model, established by co-culturing brain microvascular end...Objective To study the effect of electromagnetic pulse (EMP) exposure on permeability of in vitro blood-brain-barrier (BBB) model. Methods An in vitro BBB model, established by co-culturing brain microvascular endothelial cells (BMVEC) and astroglial cells (AC) isolated from rat brain, was exposed to EMP at 100 kV/m and 400 kV/m, respectively. Permeability of the model was assayed by measuring the transendothelial electrical resistance (TEER) and the horseradish peroxidase (HRP) transmission at different time points. Levels of BBB tight junction-related proteins were measured at O, 1, 2, 4, 8, 12, 16, 20, 24 h after EMP exposure by Western blotting. Results The TEER level was lower in BBB model group than in control group at 12 h after EMP, exposure which returned to its normal level at 24 h. The 24 h recovery process was triphasic and biphasic respectively after EMP exposure at 100 kV/m and 400 kV/m. Following exposure to 400 kV/m EMP, the HRP permeability increased at 1-12 h and returned to its normal level at 24 h. Western blotting showed that the claudin-5 and ZO-1 protein levels were changed after EMP exposure. Conclusion EMP exposure at 100 kV/m and 400 kV/m can increase the permeability of in vitro BBB model and BBB tight junction-related proteins such as ZO-1 and claudin-5 may change EMP-induced BBB permeability.展开更多
Objective The objective was to observe damage of hippocampus in rats after exposure to infrasound, and to assess HSP70 expression in hippocampus. Methods SD rats in the experimental group were exposed to 140 d B(8 Hz...Objective The objective was to observe damage of hippocampus in rats after exposure to infrasound, and to assess HSP70 expression in hippocampus. Methods SD rats in the experimental group were exposed to 140 d B(8 Hz) infrasound for 2 h per day for 3 days. The morphology of the hippocampus was examined by transmission electronic microscopic(TEM). Cell apoptosis was observed by TUNEL staining at 0 h, 24 h, 48 h, and 2 w after exposure. HSP70 expression was detected by immunohistochemistry(IHC) and Western blotting(WB). Results TEM showed that hippocampus was significantly damaged by exposure, and exhibited recovery 1 week after exposure. The TUNEL data showed that neuronal apoptosis after exposure was significantly higher than in the control rats at 24 h and 48 h, and the apoptotic cells decreased one week after exposure. IHC and WB showed HSP70 expression was significantly higher in the exposed rats, peaked at 24 h. Conclusion Exposure to 140 d B(8 Hz) infrasound for 2 h per day for 3 days appeared to induce damage to the hippocampus of rats, based on changes in ultrastructure and increased cell apoptosis. However, recovery from the damage occurred overtime. HSP70 expression also increased after the exposure and decreased by 48 h.展开更多
基金supported by the National Basic Research Program of China(2011CB503704,2011CB503705)National Natural Science Foundation of China (No. 30970670, 60871068)
文摘Objective To study the effect of electromagnetic pulse (EMP) exposure on permeability of in vitro blood-brain-barrier (BBB) model. Methods An in vitro BBB model, established by co-culturing brain microvascular endothelial cells (BMVEC) and astroglial cells (AC) isolated from rat brain, was exposed to EMP at 100 kV/m and 400 kV/m, respectively. Permeability of the model was assayed by measuring the transendothelial electrical resistance (TEER) and the horseradish peroxidase (HRP) transmission at different time points. Levels of BBB tight junction-related proteins were measured at O, 1, 2, 4, 8, 12, 16, 20, 24 h after EMP exposure by Western blotting. Results The TEER level was lower in BBB model group than in control group at 12 h after EMP, exposure which returned to its normal level at 24 h. The 24 h recovery process was triphasic and biphasic respectively after EMP exposure at 100 kV/m and 400 kV/m. Following exposure to 400 kV/m EMP, the HRP permeability increased at 1-12 h and returned to its normal level at 24 h. Western blotting showed that the claudin-5 and ZO-1 protein levels were changed after EMP exposure. Conclusion EMP exposure at 100 kV/m and 400 kV/m can increase the permeability of in vitro BBB model and BBB tight junction-related proteins such as ZO-1 and claudin-5 may change EMP-induced BBB permeability.
文摘Objective The objective was to observe damage of hippocampus in rats after exposure to infrasound, and to assess HSP70 expression in hippocampus. Methods SD rats in the experimental group were exposed to 140 d B(8 Hz) infrasound for 2 h per day for 3 days. The morphology of the hippocampus was examined by transmission electronic microscopic(TEM). Cell apoptosis was observed by TUNEL staining at 0 h, 24 h, 48 h, and 2 w after exposure. HSP70 expression was detected by immunohistochemistry(IHC) and Western blotting(WB). Results TEM showed that hippocampus was significantly damaged by exposure, and exhibited recovery 1 week after exposure. The TUNEL data showed that neuronal apoptosis after exposure was significantly higher than in the control rats at 24 h and 48 h, and the apoptotic cells decreased one week after exposure. IHC and WB showed HSP70 expression was significantly higher in the exposed rats, peaked at 24 h. Conclusion Exposure to 140 d B(8 Hz) infrasound for 2 h per day for 3 days appeared to induce damage to the hippocampus of rats, based on changes in ultrastructure and increased cell apoptosis. However, recovery from the damage occurred overtime. HSP70 expression also increased after the exposure and decreased by 48 h.