In architecture of cloud storage, the deduplication technology encrypted with theconvergent key is one of the important data compression technologies, which effectively improvesthe utilization of space and bandwidth. ...In architecture of cloud storage, the deduplication technology encrypted with theconvergent key is one of the important data compression technologies, which effectively improvesthe utilization of space and bandwidth. To further refine the usage scenarios for varioususer permissions and enhance user’s data security, we propose a blockchain-based differentialauthorized deduplication system. The proposed system optimizes the traditionalProof of Vote (PoV) consensus algorithm and simplifies the existing differential authorizationprocess to realize credible management and dynamic update of authority. Based on thedecentralized property of blockchain, we overcome the centralized single point fault problemof traditional differentially authorized deduplication system. Besides, the operations oflegitimate users are recorded in blocks to ensure the traceability of behaviors.展开更多
The 1.3 GHz superconducting radio-frequency (SRF) technology is one of the key technologies for the ILC and future XFEL and ERL projects in China. With the aim to develop 1.3 GHz SRF technology, IHEP has started a pro...The 1.3 GHz superconducting radio-frequency (SRF) technology is one of the key technologies for the ILC and future XFEL and ERL projects in China. With the aim to develop 1.3 GHz SRF technology, IHEP has started a program to build an SRF Accelerating Unit. This unit contains a 9-cell 1.3 GHz superconducting cavity, a short cryomodule, a high power input coupler, a tuner and a low level RF system. This program also includes the SRF laboratory upgrade, which will permit the unit to be built and tested at IHEP. The unit will be used for the 1.3 GHz SRF system integration study, high power horizontal test and possible beam test in the future. In this paper, we report the recent R&D status of this program. The first large grain low-loss shape 9-cell superconducting RF cavity made by IHEP reached 20 MV/m in the first vertical test in July, 2010. The prototype tuner and low level RF (LLRF) system are under test. The high power input coupler and cryomodule are under fabrication. Several key SRF facilities for 9-cell cavity surface treatment and pre-tuning were successfully commissioned and are in operation.展开更多
基金This work was supported by ZTE Industry-University-Institute Cooperation Funds under Grant No.2019ZTE03-01National Keystone R&D Program of China under Grant No.2017YFB0803204+3 种基金National Natural Science Foundation of China(NSFC)under Grant No.61671001Guangdong Provincial R&D Key Program under Grant No.2019B010137001Shenzhen Research Programs under Grant Nos.JCYJ20190808155607340,JSGG20170406144032901,JSGG20170824095858416 and JCYJ20170306092030521PCL Future Regional Network Facilities for Large-scale Experiments and Applications under Grant No.PCL2018KP001.
文摘In architecture of cloud storage, the deduplication technology encrypted with theconvergent key is one of the important data compression technologies, which effectively improvesthe utilization of space and bandwidth. To further refine the usage scenarios for varioususer permissions and enhance user’s data security, we propose a blockchain-based differentialauthorized deduplication system. The proposed system optimizes the traditionalProof of Vote (PoV) consensus algorithm and simplifies the existing differential authorizationprocess to realize credible management and dynamic update of authority. Based on thedecentralized property of blockchain, we overcome the centralized single point fault problemof traditional differentially authorized deduplication system. Besides, the operations oflegitimate users are recorded in blocks to ensure the traceability of behaviors.
文摘The 1.3 GHz superconducting radio-frequency (SRF) technology is one of the key technologies for the ILC and future XFEL and ERL projects in China. With the aim to develop 1.3 GHz SRF technology, IHEP has started a program to build an SRF Accelerating Unit. This unit contains a 9-cell 1.3 GHz superconducting cavity, a short cryomodule, a high power input coupler, a tuner and a low level RF system. This program also includes the SRF laboratory upgrade, which will permit the unit to be built and tested at IHEP. The unit will be used for the 1.3 GHz SRF system integration study, high power horizontal test and possible beam test in the future. In this paper, we report the recent R&D status of this program. The first large grain low-loss shape 9-cell superconducting RF cavity made by IHEP reached 20 MV/m in the first vertical test in July, 2010. The prototype tuner and low level RF (LLRF) system are under test. The high power input coupler and cryomodule are under fabrication. Several key SRF facilities for 9-cell cavity surface treatment and pre-tuning were successfully commissioned and are in operation.