期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Structure and Propagation Characteristics of Climatological Mean Kinetic Energy of Disturbance of Intraseasonal Oscillation in Asian Summer Monsoon Zone 被引量:1
1
作者 guo ji-bing CHEN Wei-min XU Jie 《Meteorological and Environmental Research》 CAS 2011年第6期6-10,共5页
[Objective] The research aimed to study the structure and propagation characteristics of climatological mean kinetic energy of disturbance of intraseasonal oscillation in Asian summer monsoon zone. [Method] When South... [Objective] The research aimed to study the structure and propagation characteristics of climatological mean kinetic energy of disturbance of intraseasonal oscillation in Asian summer monsoon zone. [Method] When South China Sea monsoon started to break out, the kinetic energy of intraseasonal oscillation disturbance in the monsoon zone was analyzed, especially the researches about the variation of South China Sea monsoon, the development of Indian monsoon and the advancement of East Asian monsoon. [Result] The developed process of Asian summer monsoon had the close relationship with the kinetic energy activity of 30-60 d low-frequency oscillation disturbance. The kinetic energy of disturbance explained the eruption, occurrence, development and termination of monsoon from the energy angle. It was found that the kinetic energy of disturbance in Arabian Sea zone, Bay of Bengal and South China Sea area was the strongest, especially in Arabian Sea zone. It illustrated that Arabian Sea zone (Somali jet) was the biggest energy source of Asian monsoon. The starting mark of monsoon eruption in the whole Asia was the abrupt eruption of South China Sea monsoon. The eruption of South China Sea monsoon in the middle dekad of May was the westward transmission result of kinetic energy of disturbance on the east sea surface of Philippines. The kinetic energy of disturbance in East Asian monsoon zone had the seasonal northward advancement in summer. The high kinetic energy center of disturbance in Indian monsoon zone changed from one to two. They were respectively in Arabian Sea and Bay of Bengal. [Conclusion] The research provided the theory basis for analyzing the atmospheric intraseasonal oscillation. 展开更多
关键词 Intraseasonal disturbance oscillation Asian summer monsoon Climatological average season Kinetic energy of disturbance China
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部