Photosynthesis occurs mainly in chloroplasts,whose development is regulated by proteins encoded by nuclear genes.Among them,pentapeptide repeat(PPR)proteins participate in organelle RNA editing.Although there are more...Photosynthesis occurs mainly in chloroplasts,whose development is regulated by proteins encoded by nuclear genes.Among them,pentapeptide repeat(PPR)proteins participate in organelle RNA editing.Although there are more than 450 members of the PPR protein family in rice,only a few affect RNA editing in rice chloroplasts.Gene editing technology has created new rice germplasm and mutants,which could be used for rice breeding and gene function study.This study evaluated the functions of OsPPR9 in chloroplast RNA editing in rice.The osppr9 mutants were obtained by CRISPR/Cas9,which showed yellowing leaves and a lethal phenotype,with suppressed expression of genes associated with chloroplast development and accumulation of photosynthetic-related proteins.In addition,loss of OsPPR9 protein function reduces the editing efficiency of rps8-C182,rpoC2-C4106,rps14-C80,and ndhB-C611 RNA editing sites,which affects chloroplast growth and development in rice.Our data showed that OsPPR9 is highly expressed in rice leaves and encodes a DYW-PPR protein localized in chloroplasts.Besides,the OsPPR9 protein was shown to interact with OsMORF2 and OsMORF9.Together,our findings provide insights into the role of the PPR protein in regulating chloroplast development in rice.展开更多
Further improvement of rice productivity remains a challenge. Breeding is perceived as an important option to increase rice yield. However, the genetic progress of grain yield in most rice breeding programs was slow i...Further improvement of rice productivity remains a challenge. Breeding is perceived as an important option to increase rice yield. However, the genetic progress of grain yield in most rice breeding programs was slow in the last decades. Although great progress in rice genomics and molecular biology has been achieved, the effect of such technological innovations on rice breeding is far small. Marker-assisted selection (MAS) for a few target quantitative trait loci (QTLs) has significant effects in improving qualitative traits, such as disease resistance. The success of MAS has therefore motivated breeders to identify and use major QTLs for yield and yield component traits. In this review, we summarized the recent methods in QTL identification, including novel statistical methods for linkage and association mapping, special population types, and whole-genome sequencing. We reviewed the successful application of marker-assisted gene introgression and gene pyramiding to improve grain yield and discussed the design of efficient MAS schemes to further increase the success rate of breeding programs. The use of well-characterized major QTLs through introgression and gene pyramiding is proven effective in improving grain yield, particularly yield under abiotic stress. Major QTLs that are stable across genetic background and growing environments are often found in less adapted germplasms, such as landraces and wild relatives. Advanced backcross QTL analysis and introgression lines, which integrate QTL discovery and utilization, are important methods for exploiting major QTLs contained in such germplasms. Next-generation sequencing substantially increases mapping resolution and accelerates the identification of casual genes underlying major QTLs. Practical guidelines derived from theoretical and empirical studies are given to guide the design of efficient marker-assisted gene introgression and pyramiding schemes.展开更多
Molecular design breeding is one of straightforward approaches to break yield barriers in rice. In this study, GW6 gene for grain length and width from Baodali was transferred into an indica recurrent parent 9311 and ...Molecular design breeding is one of straightforward approaches to break yield barriers in rice. In this study, GW6 gene for grain length and width from Baodali was transferred into an indica recurrent parent 9311 and a japonica variety Zhonghua 11 (ZH11) using marker-assisted backcross (MAB). One and three introgression lines were selected for phenotypic analysis from 9311 and ZH11 genetic backgrounds, respectively. SSL-1, an improved 9311 near isogenic line with GW6 performed 11%, 19% and 6.7%higher of grain length, 1000-grain weight and single plant yield, respectively, as compared with 9311. All the three improved ZH11-GW6 lines, R1, R2 and R3, had more than 30% increase in grain weight and about 7%higher in grain yield. Seed plumpness of R1, R2 and R3 was improved synchronously because the three ZH11-GW6 lines contained GIF1 (Grain Incomplete Filling 1), a dominant grain filling gene. Thus, GW6 has high potential in increasing the yield of inbred lines through MAB, making it an important genetic resource in super hybrid rice breeding. This study provides insights in the utilization of GW6 for large grain and high yield rice breeding via molecular design breeding.展开更多
The extraction of DNA is often the most time consuming and laborious step in high-throughput molecular genetic analysis and marker assisted selection (MAS) programs. A simple method for preparation of rice genomic D...The extraction of DNA is often the most time consuming and laborious step in high-throughput molecular genetic analysis and marker assisted selection (MAS) programs. A simple method for preparation of rice genomic DNA was developed. A small amount (1~50 mg) of leaf tissue of rice seedling, 500 pL of extraction buffer, and one steel bead were put into a 2-mL microcentrifuge tube. After vigorously mashing for 2 min, 5 μL of supernatant was directly applied to PCR amplification. Otherwise, the supematant was precipitated with two times volume of ethanol to obtain high quality genomic DNA. This method is simple, rapid, low cost, and reliable for PCR analysis. One person can manipulate as many as 96 samples for PCR in 10 min. It is especially suitable for genotyping of large number of samples.展开更多
Genetic segregation analysis for mature seed culturability was conducted using recombinant inbred lines derived from a cross of indica rice, Yangdao 6 and Pei'ai 64s. Three indices of seed culturability, the frequenc...Genetic segregation analysis for mature seed culturability was conducted using recombinant inbred lines derived from a cross of indica rice, Yangdao 6 and Pei'ai 64s. Three indices of seed culturability, the frequency of callus induction, the frequency of brown callus and the increase of callus weight were investigated. A combined genetic map constructed with simple sequence repeat (SSR), sequence tag site (STS), cleaved amplified polymorphic sequences (CAPS) and single nucleotide polymorphism (SNP) markers covered a total distance of 1 732.5 cM, averaging approximately 12 cM between two neighboring loci. Three QTLs on chromosomes 7, 7 and 10 were detected for the frequency of callus induction; three QTLs on chromosomes 6, 7 and 9 were detected for the frequency of brown callus; and two QTLs on chromosomes 5 and 7 were detected for the increase of callus weight. Common QTLs mapped at the interval flanking RM5481 and RM6835 on chromosome 7 were identified to be involved in the frequency of callus induction and the frequency of brown callus, explaining 7.29% and 12.52% of phenotypic variation, respectively. A total of 14 epistatic effects were detected for the three indices of mature seed culturability. ~展开更多
A mutant of panicle differentiation in rice called non-panicle (nop) was discovered in the progeny of a cross between 93-11 and Nipponbare. The mutant exhibits normal plant morphology but has apparently few tillers....A mutant of panicle differentiation in rice called non-panicle (nop) was discovered in the progeny of a cross between 93-11 and Nipponbare. The mutant exhibits normal plant morphology but has apparently few tillers. The most striking change in nop is that its panicle differentiation is blocked, with masses of fluffy bract nodes generate from the positions where rachis branches normally develop in wild-type plants. Genetic analysis suggests that nop is controlled by a single recessive gene, which is temporarily named Nop(t). Based on its mutant phenotype, Nop(t) represents a key gene controlling the initiation of inflorescence differentiation, By using simple sequence repeat markers and sequence tagged site markers, Nop(t) gene was fine mapped in a 102-kb interval on the long arm of chromosome 6. These results will facilitate the positional cloning and functional studies of the gene.展开更多
基金funded by the Central Public-Interest Scientific Institution Basal Research Fund,China(CPSIBRF-CNRRI-202111 and CPSIBRF-CNRRI-202110)the Agricultural Science and Technology Innovation Program,Chinese Academy of Agricultural Sciences(ASTIP)+1 种基金the Project of State Key Laboratory of Rice Biology,China(2020ZZKT10205)the Key Research and Development Project of China Rice Research Institute(CNRRI-2020-01)。
文摘Photosynthesis occurs mainly in chloroplasts,whose development is regulated by proteins encoded by nuclear genes.Among them,pentapeptide repeat(PPR)proteins participate in organelle RNA editing.Although there are more than 450 members of the PPR protein family in rice,only a few affect RNA editing in rice chloroplasts.Gene editing technology has created new rice germplasm and mutants,which could be used for rice breeding and gene function study.This study evaluated the functions of OsPPR9 in chloroplast RNA editing in rice.The osppr9 mutants were obtained by CRISPR/Cas9,which showed yellowing leaves and a lethal phenotype,with suppressed expression of genes associated with chloroplast development and accumulation of photosynthetic-related proteins.In addition,loss of OsPPR9 protein function reduces the editing efficiency of rps8-C182,rpoC2-C4106,rps14-C80,and ndhB-C611 RNA editing sites,which affects chloroplast growth and development in rice.Our data showed that OsPPR9 is highly expressed in rice leaves and encodes a DYW-PPR protein localized in chloroplasts.Besides,the OsPPR9 protein was shown to interact with OsMORF2 and OsMORF9.Together,our findings provide insights into the role of the PPR protein in regulating chloroplast development in rice.
基金supported by the National Natural Science Foundation of China(Grant Nos.31221004 and 31271700)National Basic Research Program of China(Grant No.2013CBA01405)the Chinese 863 Program(Grant No.2012AA10A302)
文摘Further improvement of rice productivity remains a challenge. Breeding is perceived as an important option to increase rice yield. However, the genetic progress of grain yield in most rice breeding programs was slow in the last decades. Although great progress in rice genomics and molecular biology has been achieved, the effect of such technological innovations on rice breeding is far small. Marker-assisted selection (MAS) for a few target quantitative trait loci (QTLs) has significant effects in improving qualitative traits, such as disease resistance. The success of MAS has therefore motivated breeders to identify and use major QTLs for yield and yield component traits. In this review, we summarized the recent methods in QTL identification, including novel statistical methods for linkage and association mapping, special population types, and whole-genome sequencing. We reviewed the successful application of marker-assisted gene introgression and gene pyramiding to improve grain yield and discussed the design of efficient MAS schemes to further increase the success rate of breeding programs. The use of well-characterized major QTLs through introgression and gene pyramiding is proven effective in improving grain yield, particularly yield under abiotic stress. Major QTLs that are stable across genetic background and growing environments are often found in less adapted germplasms, such as landraces and wild relatives. Advanced backcross QTL analysis and introgression lines, which integrate QTL discovery and utilization, are important methods for exploiting major QTLs contained in such germplasms. Next-generation sequencing substantially increases mapping resolution and accelerates the identification of casual genes underlying major QTLs. Practical guidelines derived from theoretical and empirical studies are given to guide the design of efficient marker-assisted gene introgression and pyramiding schemes.
基金supported by grants from the National Science Foundation of China (Grant No. 31271700)National Basic Research Program of China (Grant No. 2013CBA01405)
文摘Molecular design breeding is one of straightforward approaches to break yield barriers in rice. In this study, GW6 gene for grain length and width from Baodali was transferred into an indica recurrent parent 9311 and a japonica variety Zhonghua 11 (ZH11) using marker-assisted backcross (MAB). One and three introgression lines were selected for phenotypic analysis from 9311 and ZH11 genetic backgrounds, respectively. SSL-1, an improved 9311 near isogenic line with GW6 performed 11%, 19% and 6.7%higher of grain length, 1000-grain weight and single plant yield, respectively, as compared with 9311. All the three improved ZH11-GW6 lines, R1, R2 and R3, had more than 30% increase in grain weight and about 7%higher in grain yield. Seed plumpness of R1, R2 and R3 was improved synchronously because the three ZH11-GW6 lines contained GIF1 (Grain Incomplete Filling 1), a dominant grain filling gene. Thus, GW6 has high potential in increasing the yield of inbred lines through MAB, making it an important genetic resource in super hybrid rice breeding. This study provides insights in the utilization of GW6 for large grain and high yield rice breeding via molecular design breeding.
基金supported by grants from the Ministry of Agriculture of China for transgenic research(Grant No.2008ZX08009-003)the National Natural Science Foundation of China(Grant Nos.30710103903 and 30771160)the Natural Science Foundation of Zhejiang Province,China(Grant No.R3090023)
文摘The extraction of DNA is often the most time consuming and laborious step in high-throughput molecular genetic analysis and marker assisted selection (MAS) programs. A simple method for preparation of rice genomic DNA was developed. A small amount (1~50 mg) of leaf tissue of rice seedling, 500 pL of extraction buffer, and one steel bead were put into a 2-mL microcentrifuge tube. After vigorously mashing for 2 min, 5 μL of supernatant was directly applied to PCR amplification. Otherwise, the supematant was precipitated with two times volume of ethanol to obtain high quality genomic DNA. This method is simple, rapid, low cost, and reliable for PCR analysis. One person can manipulate as many as 96 samples for PCR in 10 min. It is especially suitable for genotyping of large number of samples.
基金supported by grants from the Natural Science Fund for Distinguished Young ScholarsZhejiang Province+2 种基金China(Grant No.LR12C06001)Project of Transgenic CropsChina(Grant No.2011ZX08001)
文摘Genetic segregation analysis for mature seed culturability was conducted using recombinant inbred lines derived from a cross of indica rice, Yangdao 6 and Pei'ai 64s. Three indices of seed culturability, the frequency of callus induction, the frequency of brown callus and the increase of callus weight were investigated. A combined genetic map constructed with simple sequence repeat (SSR), sequence tag site (STS), cleaved amplified polymorphic sequences (CAPS) and single nucleotide polymorphism (SNP) markers covered a total distance of 1 732.5 cM, averaging approximately 12 cM between two neighboring loci. Three QTLs on chromosomes 7, 7 and 10 were detected for the frequency of callus induction; three QTLs on chromosomes 6, 7 and 9 were detected for the frequency of brown callus; and two QTLs on chromosomes 5 and 7 were detected for the increase of callus weight. Common QTLs mapped at the interval flanking RM5481 and RM6835 on chromosome 7 were identified to be involved in the frequency of callus induction and the frequency of brown callus, explaining 7.29% and 12.52% of phenotypic variation, respectively. A total of 14 epistatic effects were detected for the three indices of mature seed culturability. ~
基金supported by the grants from the National Natural Science Foundation of China (Grant No.30300196 and No. 30771160)the State Key Basic Research Program of China (Grant No.2007CB10920203)the Research Program of Zhejiang Province,China
文摘A mutant of panicle differentiation in rice called non-panicle (nop) was discovered in the progeny of a cross between 93-11 and Nipponbare. The mutant exhibits normal plant morphology but has apparently few tillers. The most striking change in nop is that its panicle differentiation is blocked, with masses of fluffy bract nodes generate from the positions where rachis branches normally develop in wild-type plants. Genetic analysis suggests that nop is controlled by a single recessive gene, which is temporarily named Nop(t). Based on its mutant phenotype, Nop(t) represents a key gene controlling the initiation of inflorescence differentiation, By using simple sequence repeat markers and sequence tagged site markers, Nop(t) gene was fine mapped in a 102-kb interval on the long arm of chromosome 6. These results will facilitate the positional cloning and functional studies of the gene.