The ultrathin polyelectrolyte molecular deposition films and polyelectrolyte composite nanoparticles molecular deposition films were prepared using layer-by-layer molecular deposition method and in situ growth method....The ultrathin polyelectrolyte molecular deposition films and polyelectrolyte composite nanoparticles molecular deposition films were prepared using layer-by-layer molecular deposition method and in situ growth method.A micro-tribometer has been developed to measure the shear response of those ultrathin molecular deposition films.By using a smooth steel sphere in a ball-on-flat configuration,the shear force was determined for molecular deposition films on glass substrate for different layers.The results indicate that the shear behaviors of molecular deposition film were mainly determined with the contact area and film layers.Moreover,the composite molecular deposition film with nanoparticles has better shear behaviors than the polyelectrolyte molecular deposition film.The shear force of polyelectrolyte molecular deposition film is more dependent on the speed than that of composite nanoparticle molecular deposition film.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 50975288)the National Basic Research Program of China ("973" Program) (Grant No. 2007CB607604)
文摘The ultrathin polyelectrolyte molecular deposition films and polyelectrolyte composite nanoparticles molecular deposition films were prepared using layer-by-layer molecular deposition method and in situ growth method.A micro-tribometer has been developed to measure the shear response of those ultrathin molecular deposition films.By using a smooth steel sphere in a ball-on-flat configuration,the shear force was determined for molecular deposition films on glass substrate for different layers.The results indicate that the shear behaviors of molecular deposition film were mainly determined with the contact area and film layers.Moreover,the composite molecular deposition film with nanoparticles has better shear behaviors than the polyelectrolyte molecular deposition film.The shear force of polyelectrolyte molecular deposition film is more dependent on the speed than that of composite nanoparticle molecular deposition film.