Aiming at improving the properties of magnesia carbon materials,silicon aluminum carbide(Al_(4)SiC_(4))containing materials were prepared using industrial aluminum powder,silicon carbide powder,and graphite as raw mat...Aiming at improving the properties of magnesia carbon materials,silicon aluminum carbide(Al_(4)SiC_(4))containing materials were prepared using industrial aluminum powder,silicon carbide powder,and graphite as raw materials,and activated alumina powder as an additive,mixing thoroughly,pressing into cylinders and then firing at 1200℃for 30 min in a carbon embedded atmosphere by the microwave method.The effects of the aluminum powder addition(20%and 24%,by mass)and activated alumina powder addition(0,3%,5%and 7%,by mass)on the microwave synthesis of Al_(4)SiC_(4) as well as the effect of the obtained Al_(4)SiC_(4) containing material on the properties of magnesia carbon bricks were studied.The results show that:compared with the samples with 20%aluminum powder,those with 24%aluminum powder generate more Al_(4)SiC_(4).With the activated alumina powder addition increasing from 0 to 7%,the amount of Al_(4)SiC_(4) generated increases first and then decreases.Compared with the sample without activated alumina powder,the samples with activated alumina powder show lower bulk density and higher apparent porosity.With the activated alumina powder addition increasing from 3%to 7%,the bulk density of the samples increases first and then decreases,while the apparent porosity of the samples shows an opposite trend.The optimal additions are 24%aluminum powder and 5%activated alumina powder,and Al_(4)SiC_(4) synthesized in this sample has a hexagonal plate structure.With the synthesized Al_(4)SiC_(4) containing material added,the magnesia carbon brick has slightly increased cold modulus of rupture,basically the same modulus of elasticity and improved oxidation resistance.展开更多
Al_(4)SiC_(4) was synthesized from Al powder, silicon carbide, and graphite by microwave sintering, and characterized by XRD and SEM. Then the synthesized material was added to the magnesia carbon refractory brick to ...Al_(4)SiC_(4) was synthesized from Al powder, silicon carbide, and graphite by microwave sintering, and characterized by XRD and SEM. Then the synthesized material was added to the magnesia carbon refractory brick to study its effect on the oxidation resistance, apparent porosity, bulk density, elastic modulus, and modulus of rupture. It is found that Al_(4)SiC_(4) can be synthesized by microwave sintering at 1 300 ℃ and the addition of Al_(4)SiC_(4)-containing material as an antioxidant can enhance the oxidation resistance of the magnesia carbon refractory brick.展开更多
射频四极场加速器(Radio Frequency Quadrupole,RFQ)广泛应用于质子加速器装置中,高频率、紧凑型RFQ的发展可以推动质子加速器装置的小型化,同时也面临调谐困难的问题。紧凑型RFQ的性能对腔体尺寸的敏感度高,基于理论物理特性的传统调...射频四极场加速器(Radio Frequency Quadrupole,RFQ)广泛应用于质子加速器装置中,高频率、紧凑型RFQ的发展可以推动质子加速器装置的小型化,同时也面临调谐困难的问题。紧凑型RFQ的性能对腔体尺寸的敏感度高,基于理论物理特性的传统调谐算法难以取得良好效果,而基于腔体实际物理特性的调谐算法则可以解决紧凑型RFQ的调谐难点。本文提出了一种基于响应矩阵和最小二乘法的调谐算法,该算法可以限定求解的范围,避免计算结果超出调谐器可调谐范围的问题;为二极场分量赋予权重,可以高效地降低二极场误差,解决二极场分量难以调谐的问题。根据新的调谐算法分别在模拟环境下的RFQ样机上完成了调谐实验,在搭建的测量平台获得的结果显示:初始状态下二、四极场误差分别为24.09%和1.57%,经过5次调谐后两者误差分别降为2.33%和1.39%,验证了调谐算法的有效性。该调谐算法具有普适性,也可以用于其他频率的RFQ,将来还可以促进质子加速器装置的小型化,推动医用质子装置的普及。展开更多
With the rapid industrialization and urbanization,the demand for air quality management is more and more urgent.High temperature dust filtration is one important environmental management technology.Porous ceramics are...With the rapid industrialization and urbanization,the demand for air quality management is more and more urgent.High temperature dust filtration is one important environmental management technology.Porous ceramics are used as filter materials in the field of high-temperature dust filtration because of their unique advantages such as high filtration efficiency,as well as high temperature stability,particle loss resistance,corrosion resistance and durability.This paper mainly introduced several common preparation techniques of porous ceramics,including the traditional organic foam impregnation method,foaming method,in-situ combustion method,pore-forming method and other new methods such as the template method,gel injection molding method,freeze-drying method,multi-component co-precipitation method and hydrogel method.The principle,advantages and disadvantages of these preparation technologies and their research status were described.The application of these technologies in the field of high temperature dust filtration was briefly reviewed.Finally,the application prospect of the porous ceramics in the field of high temperature dust filtration was prospected.展开更多
Ultra-high temperature ceramic coatings have ultra-high melting points,excellent mechanical properties and high temperature ablation resistance.These unique performance combinations turn it into a promising material f...Ultra-high temperature ceramic coatings have ultra-high melting points,excellent mechanical properties and high temperature ablation resistance.These unique performance combinations turn it into a promising material for use in extreme environment structures in rockets and hypersonic vehicles,particularly nozzles,leading edges and engine components.In this paper,various preparation methods of ultra-high temperature ceramic coatings were reviewed,including plasma spraying,chemical vapor deposition,pack cementation,slurry sintering,hot pressing and their research progress.Meanwhile,some new preparation methods of high temperature coatings,such as ion beam deposition,ultrasonic spraying,metal organic frame work coating,and magnetron sputtering,were introduced.The development trend of ultra-high temperature coatings was prospected as well.展开更多
我国煤层普遍具有低透气性、高瓦斯含量的特性,在低透气性煤层增透方面,煤层注水、水力压裂、水力割缝等水力化技术得到了广泛应用,并取得了良好的瓦斯治理效果。然而水作为外侵液进入煤体,堵塞了瓦斯流动通道,降低了瓦斯解吸量,产生了...我国煤层普遍具有低透气性、高瓦斯含量的特性,在低透气性煤层增透方面,煤层注水、水力压裂、水力割缝等水力化技术得到了广泛应用,并取得了良好的瓦斯治理效果。然而水作为外侵液进入煤体,堵塞了瓦斯流动通道,降低了瓦斯解吸量,产生了水锁效应。为分析水力化技术造成水锁效应的内在机理,利用压汞实验分析了煤样孔容分布规律,以及利用扫描电镜分析了原始、饱水、饱CMC溶液煤样的微观结构,基于低场核磁共振技术研究了煤样在饱水状态以及饱CMC溶液状态下的液相滞留效应,并根据曲线相似度法分析了孔径与束缚流体饱和度的相似度。研究结果表明:CMC溶液可以溶解煤中的矿物质增加煤孔隙裂隙以及降低水在煤体表面的表面张力,从而达到解除水锁效应的目的;随着煤变质程度的增大,T 2截止值在逐渐减小,T 2截止值的数值与煤样孔径大小呈负相关;煤样的束缚流体饱和度远大于自由流体饱和度,煤样在饱水状态下的束缚流体饱和度比饱CMC溶液状态下高;高变质程度的煤大孔孔容少、微孔孔容多,使得水在煤孔隙中的毛细管力大,最终造成高阶煤的水锁效应严重;大孔孔容是影响束缚流体饱和度的主控因素,微孔起到正向促进作用,得到束缚流体饱和度S与大孔孔容V A、微孔孔容V D的耦合关系式:S=94.86-1078.96 V A+261.24 V D。滞留在煤体内的束缚水阻塞了瓦斯流动通道,是造成水锁效应的根本原因,增加煤层的孔隙裂隙以及选用合适的表面活性是减缓煤层水锁效应的有效措施。展开更多
To research techniques for removing the water blocking effect caused by hydraulic applications in coal seams,the use of surfactants is proposed,based on the mechanics of the water blocking effect.Centrifugal experimen...To research techniques for removing the water blocking effect caused by hydraulic applications in coal seams,the use of surfactants is proposed,based on the mechanics of the water blocking effect.Centrifugal experiments were used to validate the effects of using surfactants;the results show that after dealing with vacuum saturation with water,the volume of micropores decreases,which results in a larger average pore size,and the volume of transitional pores,mesopores,macropores and total pores increases.Based on the distribution of pore size,the operation mode of ‘‘water infusion after gas extraction,then continuing gas extraction" is recommended to improve the volume of coal mine gas drainage.When the reflectance of vitrinite in coal samples is less than 1,using the surfactants Fast T,1631,APG,BS can mitigate the damage caused by the water blocking effect.But when the reflectance of vitrinite is larger than 1.4,the damage caused by the water blocking effect can be increased.When the surfactant CMC is used in hydraulic applications,the capillary forces of coal samples are almost negative,which means the capillary force is in the same direction as the gas extraction.The direction of capillary forces benefits the gas flow.So,using CMC can play an active role in removing the water blocking effect.Centrifugal experiments confirm that using CMC can effectively remove the water blocking effect,which has a beneficial effect on improving the gas drainage volume.展开更多
[目的/意义]黑土是全球最珍贵的土壤资源,通过探讨国际黑土领域的研究现状和进展,促进我国黑土领域的深入研究和黑土地保护。[方法/过程]该文基于Web of Science数据库核心合集,对黑土领域相关文献进行整理分析,利用文献计量学方法和知...[目的/意义]黑土是全球最珍贵的土壤资源,通过探讨国际黑土领域的研究现状和进展,促进我国黑土领域的深入研究和黑土地保护。[方法/过程]该文基于Web of Science数据库核心合集,对黑土领域相关文献进行整理分析,利用文献计量学方法和知识图谱可视化方法,从年度发文趋势、主要国家发文情况、主要机构发文情况、高被引论文情况和研究主题分布五个方面,对全球黑土领域论文的整体状况进行定量统计和定性分析,总结国际黑土领域相关研究进展。[结果/结论]研究结论显示,全球黑土领域发文总体呈快速增长趋势,中国是该领域发文最多的国家,俄罗斯和美国紧随其后。从论文影响力看,中国、美国和加拿大的总被引频次位居前三,篇均被引频次排名前三的国家分别是加拿大、美国和澳大利亚。发文机构以中国和俄罗斯的科研机构为首,中国科学院和俄罗斯科学院发文量最高。国际黑土研究热点主要集中在黑土流失现状、黑土地农作物种植、黑土地结构及重金属污染、土壤有机质和土壤微生物群落及其多样性。各国研究主题各有侧重。展开更多
基金This work was funded by Luoyang Major Science and Technology Innovation Project(2301009A)Henan Province Key ResearchandDevelopment Project(231111230200).
文摘Aiming at improving the properties of magnesia carbon materials,silicon aluminum carbide(Al_(4)SiC_(4))containing materials were prepared using industrial aluminum powder,silicon carbide powder,and graphite as raw materials,and activated alumina powder as an additive,mixing thoroughly,pressing into cylinders and then firing at 1200℃for 30 min in a carbon embedded atmosphere by the microwave method.The effects of the aluminum powder addition(20%and 24%,by mass)and activated alumina powder addition(0,3%,5%and 7%,by mass)on the microwave synthesis of Al_(4)SiC_(4) as well as the effect of the obtained Al_(4)SiC_(4) containing material on the properties of magnesia carbon bricks were studied.The results show that:compared with the samples with 20%aluminum powder,those with 24%aluminum powder generate more Al_(4)SiC_(4).With the activated alumina powder addition increasing from 0 to 7%,the amount of Al_(4)SiC_(4) generated increases first and then decreases.Compared with the sample without activated alumina powder,the samples with activated alumina powder show lower bulk density and higher apparent porosity.With the activated alumina powder addition increasing from 3%to 7%,the bulk density of the samples increases first and then decreases,while the apparent porosity of the samples shows an opposite trend.The optimal additions are 24%aluminum powder and 5%activated alumina powder,and Al_(4)SiC_(4) synthesized in this sample has a hexagonal plate structure.With the synthesized Al_(4)SiC_(4) containing material added,the magnesia carbon brick has slightly increased cold modulus of rupture,basically the same modulus of elasticity and improved oxidation resistance.
基金This work was funded by Luoyang Major Science and Technology Innovation Project(2301009A)Henan Province Key Research and Development Project(231111230200)。
文摘Al_(4)SiC_(4) was synthesized from Al powder, silicon carbide, and graphite by microwave sintering, and characterized by XRD and SEM. Then the synthesized material was added to the magnesia carbon refractory brick to study its effect on the oxidation resistance, apparent porosity, bulk density, elastic modulus, and modulus of rupture. It is found that Al_(4)SiC_(4) can be synthesized by microwave sintering at 1 300 ℃ and the addition of Al_(4)SiC_(4)-containing material as an antioxidant can enhance the oxidation resistance of the magnesia carbon refractory brick.
文摘射频四极场加速器(Radio Frequency Quadrupole,RFQ)广泛应用于质子加速器装置中,高频率、紧凑型RFQ的发展可以推动质子加速器装置的小型化,同时也面临调谐困难的问题。紧凑型RFQ的性能对腔体尺寸的敏感度高,基于理论物理特性的传统调谐算法难以取得良好效果,而基于腔体实际物理特性的调谐算法则可以解决紧凑型RFQ的调谐难点。本文提出了一种基于响应矩阵和最小二乘法的调谐算法,该算法可以限定求解的范围,避免计算结果超出调谐器可调谐范围的问题;为二极场分量赋予权重,可以高效地降低二极场误差,解决二极场分量难以调谐的问题。根据新的调谐算法分别在模拟环境下的RFQ样机上完成了调谐实验,在搭建的测量平台获得的结果显示:初始状态下二、四极场误差分别为24.09%和1.57%,经过5次调谐后两者误差分别降为2.33%和1.39%,验证了调谐算法的有效性。该调谐算法具有普适性,也可以用于其他频率的RFQ,将来还可以促进质子加速器装置的小型化,推动医用质子装置的普及。
文摘With the rapid industrialization and urbanization,the demand for air quality management is more and more urgent.High temperature dust filtration is one important environmental management technology.Porous ceramics are used as filter materials in the field of high-temperature dust filtration because of their unique advantages such as high filtration efficiency,as well as high temperature stability,particle loss resistance,corrosion resistance and durability.This paper mainly introduced several common preparation techniques of porous ceramics,including the traditional organic foam impregnation method,foaming method,in-situ combustion method,pore-forming method and other new methods such as the template method,gel injection molding method,freeze-drying method,multi-component co-precipitation method and hydrogel method.The principle,advantages and disadvantages of these preparation technologies and their research status were described.The application of these technologies in the field of high temperature dust filtration was briefly reviewed.Finally,the application prospect of the porous ceramics in the field of high temperature dust filtration was prospected.
基金supported by the Henan College Students Innovation and Entrepreneurship Training Program(202211070009 and 202211070016).
文摘Ultra-high temperature ceramic coatings have ultra-high melting points,excellent mechanical properties and high temperature ablation resistance.These unique performance combinations turn it into a promising material for use in extreme environment structures in rockets and hypersonic vehicles,particularly nozzles,leading edges and engine components.In this paper,various preparation methods of ultra-high temperature ceramic coatings were reviewed,including plasma spraying,chemical vapor deposition,pack cementation,slurry sintering,hot pressing and their research progress.Meanwhile,some new preparation methods of high temperature coatings,such as ion beam deposition,ultrasonic spraying,metal organic frame work coating,and magnetron sputtering,were introduced.The development trend of ultra-high temperature coatings was prospected as well.
文摘我国煤层普遍具有低透气性、高瓦斯含量的特性,在低透气性煤层增透方面,煤层注水、水力压裂、水力割缝等水力化技术得到了广泛应用,并取得了良好的瓦斯治理效果。然而水作为外侵液进入煤体,堵塞了瓦斯流动通道,降低了瓦斯解吸量,产生了水锁效应。为分析水力化技术造成水锁效应的内在机理,利用压汞实验分析了煤样孔容分布规律,以及利用扫描电镜分析了原始、饱水、饱CMC溶液煤样的微观结构,基于低场核磁共振技术研究了煤样在饱水状态以及饱CMC溶液状态下的液相滞留效应,并根据曲线相似度法分析了孔径与束缚流体饱和度的相似度。研究结果表明:CMC溶液可以溶解煤中的矿物质增加煤孔隙裂隙以及降低水在煤体表面的表面张力,从而达到解除水锁效应的目的;随着煤变质程度的增大,T 2截止值在逐渐减小,T 2截止值的数值与煤样孔径大小呈负相关;煤样的束缚流体饱和度远大于自由流体饱和度,煤样在饱水状态下的束缚流体饱和度比饱CMC溶液状态下高;高变质程度的煤大孔孔容少、微孔孔容多,使得水在煤孔隙中的毛细管力大,最终造成高阶煤的水锁效应严重;大孔孔容是影响束缚流体饱和度的主控因素,微孔起到正向促进作用,得到束缚流体饱和度S与大孔孔容V A、微孔孔容V D的耦合关系式:S=94.86-1078.96 V A+261.24 V D。滞留在煤体内的束缚水阻塞了瓦斯流动通道,是造成水锁效应的根本原因,增加煤层的孔隙裂隙以及选用合适的表面活性是减缓煤层水锁效应的有效措施。
基金financially supported by the National Natural Science Foundation of China (No.51504084)the Education Department of Fujian Province (No.JA15493)
文摘To research techniques for removing the water blocking effect caused by hydraulic applications in coal seams,the use of surfactants is proposed,based on the mechanics of the water blocking effect.Centrifugal experiments were used to validate the effects of using surfactants;the results show that after dealing with vacuum saturation with water,the volume of micropores decreases,which results in a larger average pore size,and the volume of transitional pores,mesopores,macropores and total pores increases.Based on the distribution of pore size,the operation mode of ‘‘water infusion after gas extraction,then continuing gas extraction" is recommended to improve the volume of coal mine gas drainage.When the reflectance of vitrinite in coal samples is less than 1,using the surfactants Fast T,1631,APG,BS can mitigate the damage caused by the water blocking effect.But when the reflectance of vitrinite is larger than 1.4,the damage caused by the water blocking effect can be increased.When the surfactant CMC is used in hydraulic applications,the capillary forces of coal samples are almost negative,which means the capillary force is in the same direction as the gas extraction.The direction of capillary forces benefits the gas flow.So,using CMC can play an active role in removing the water blocking effect.Centrifugal experiments confirm that using CMC can effectively remove the water blocking effect,which has a beneficial effect on improving the gas drainage volume.
文摘[目的/意义]黑土是全球最珍贵的土壤资源,通过探讨国际黑土领域的研究现状和进展,促进我国黑土领域的深入研究和黑土地保护。[方法/过程]该文基于Web of Science数据库核心合集,对黑土领域相关文献进行整理分析,利用文献计量学方法和知识图谱可视化方法,从年度发文趋势、主要国家发文情况、主要机构发文情况、高被引论文情况和研究主题分布五个方面,对全球黑土领域论文的整体状况进行定量统计和定性分析,总结国际黑土领域相关研究进展。[结果/结论]研究结论显示,全球黑土领域发文总体呈快速增长趋势,中国是该领域发文最多的国家,俄罗斯和美国紧随其后。从论文影响力看,中国、美国和加拿大的总被引频次位居前三,篇均被引频次排名前三的国家分别是加拿大、美国和澳大利亚。发文机构以中国和俄罗斯的科研机构为首,中国科学院和俄罗斯科学院发文量最高。国际黑土研究热点主要集中在黑土流失现状、黑土地农作物种植、黑土地结构及重金属污染、土壤有机质和土壤微生物群落及其多样性。各国研究主题各有侧重。