ORB-SLAM算法通过ORB(oriented FAST and rotated BRIEF)描述子匹配特征点,其光照强度鲁棒性不足,难以在光照条件较差时应用。对此,利用HSV空间中色调(Hue)光照强度鲁棒性较强的特点,提出通过高斯混合模型于前端匹配时将色调加入ORB特...ORB-SLAM算法通过ORB(oriented FAST and rotated BRIEF)描述子匹配特征点,其光照强度鲁棒性不足,难以在光照条件较差时应用。对此,利用HSV空间中色调(Hue)光照强度鲁棒性较强的特点,提出通过高斯混合模型于前端匹配时将色调加入ORB特征匹配的方法,以解决特征匹配时光照强度鲁棒性不足的问题。通过光束平差法(bundle adjustment)进行位姿优化后,基于贝叶斯滤波模型,根据当前场景构建视觉字典以完成回环检测,提高SLAM算法精度。实验结果表明,相比ORB-SLAM算法,在保证实时性不变的情况下,本文算法精度与光照强度鲁棒性有明显提升。展开更多
Traditional hand rehabilitation gloves usually use electrical motor as actuator with disadvantages of heaviness,bulkiness and less compliance.Recently,the soft pneumatic actuator is demonstrated to be more suitable fo...Traditional hand rehabilitation gloves usually use electrical motor as actuator with disadvantages of heaviness,bulkiness and less compliance.Recently,the soft pneumatic actuator is demonstrated to be more suitable for hand rehabilitation compared to motor because of its inherent compliance,flexibility and safety.In order to design a wearable glove in request of hand rehabilitation,a soft hoop-reinforced pneumatic actuator is presented.By analyzing the influence of its section shape and geometrical parameters on bending performance,the preferred structure of actuator is achieved based on finite element method.An improved hoop-reinforced actuator is designed after the fabrication and initial measurement,and its mathematical model is built in order to quickly obtain the bending angle response when pressurized.A series of experiment about bending performance are implemented to validate the agreement between the finite element,mathematical and experimental results,and the performance improvement of hoop-reinforced actuator.In addition,the designed hand rehabilitation glove is tested by measuring its output force and actual wearing experience.The output force can reach 2.5 to 3 N when the pressure is 200 kPa.The research results indicate that the designed glove with hoop-reinforced actuator can meet the requirements of hand rehabilitation and has prospective application in hand rehabilitation.展开更多
文摘ORB-SLAM算法通过ORB(oriented FAST and rotated BRIEF)描述子匹配特征点,其光照强度鲁棒性不足,难以在光照条件较差时应用。对此,利用HSV空间中色调(Hue)光照强度鲁棒性较强的特点,提出通过高斯混合模型于前端匹配时将色调加入ORB特征匹配的方法,以解决特征匹配时光照强度鲁棒性不足的问题。通过光束平差法(bundle adjustment)进行位姿优化后,基于贝叶斯滤波模型,根据当前场景构建视觉字典以完成回环检测,提高SLAM算法精度。实验结果表明,相比ORB-SLAM算法,在保证实时性不变的情况下,本文算法精度与光照强度鲁棒性有明显提升。
基金Project(51305202)supported by the National Natural Science Foundation of China
文摘Traditional hand rehabilitation gloves usually use electrical motor as actuator with disadvantages of heaviness,bulkiness and less compliance.Recently,the soft pneumatic actuator is demonstrated to be more suitable for hand rehabilitation compared to motor because of its inherent compliance,flexibility and safety.In order to design a wearable glove in request of hand rehabilitation,a soft hoop-reinforced pneumatic actuator is presented.By analyzing the influence of its section shape and geometrical parameters on bending performance,the preferred structure of actuator is achieved based on finite element method.An improved hoop-reinforced actuator is designed after the fabrication and initial measurement,and its mathematical model is built in order to quickly obtain the bending angle response when pressurized.A series of experiment about bending performance are implemented to validate the agreement between the finite element,mathematical and experimental results,and the performance improvement of hoop-reinforced actuator.In addition,the designed hand rehabilitation glove is tested by measuring its output force and actual wearing experience.The output force can reach 2.5 to 3 N when the pressure is 200 kPa.The research results indicate that the designed glove with hoop-reinforced actuator can meet the requirements of hand rehabilitation and has prospective application in hand rehabilitation.