With the development of controllable quantum systems,fast and practical characterization of multi-qubit gates has become essential for building high-fidelity quantum computing devices.The usual way to fulfill this req...With the development of controllable quantum systems,fast and practical characterization of multi-qubit gates has become essential for building high-fidelity quantum computing devices.The usual way to fulfill this requirement via randomized benchmarking demands complicated implementation of numerous multi-qubit twirling gates.How to efficiently and reliably estimate the fidelity of a quantum process remains an open problem.This work thus proposes a character-cycle benchmarking protocol and a character-average benchmarking protocol using only local twirling gates to estimate the process fidelity of an individual multi-qubit operation.Our protocols were able to characterize a large class of quantum gates including and beyond the Clifford group via the local gauge transformation,which forms a universal gate set for quantum computing.We demonstrated numerically our protocols for a non-Clifford gate—controlled-(T X)and a Clifford gate—five-qubit quantum errorcorrecting encoding circuit.The numerical results show that our protocols can efficiently and reliably characterize the gate process fidelities.Compared with the cross-entropy benchmarking,the simulation results show that the character-average benchmarking achieves three orders of magnitude improvements in terms of sampling complexity.展开更多
基金National Natural Science Foundation of China(11875173,12174216)National Key Research and Development Program of China(2019QY0702,2017YFA0303903)。
文摘With the development of controllable quantum systems,fast and practical characterization of multi-qubit gates has become essential for building high-fidelity quantum computing devices.The usual way to fulfill this requirement via randomized benchmarking demands complicated implementation of numerous multi-qubit twirling gates.How to efficiently and reliably estimate the fidelity of a quantum process remains an open problem.This work thus proposes a character-cycle benchmarking protocol and a character-average benchmarking protocol using only local twirling gates to estimate the process fidelity of an individual multi-qubit operation.Our protocols were able to characterize a large class of quantum gates including and beyond the Clifford group via the local gauge transformation,which forms a universal gate set for quantum computing.We demonstrated numerically our protocols for a non-Clifford gate—controlled-(T X)and a Clifford gate—five-qubit quantum errorcorrecting encoding circuit.The numerical results show that our protocols can efficiently and reliably characterize the gate process fidelities.Compared with the cross-entropy benchmarking,the simulation results show that the character-average benchmarking achieves three orders of magnitude improvements in terms of sampling complexity.