期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Senescent mesenchymal stem/stromal cells in pre-metastatic bone marrow of untreated advanced breast cancer patients
1
作者 FRANCISCO RAÚL BORZONE MARÍA BELÉN GIORELLO +6 位作者 LEANDRO MARCELO MARTINEZ MARÍA CECILIA SANMARTIN LEONARDO FELDMAN FEDERICO DIMASE EMILIO BATAGELJ gustavo yannarelli NORMA ALEJANDRA CHASSEING 《Oncology Research》 SCIE 2023年第3期361-374,共14页
Breast cancer is the predominant form of carcinoma among women worldwide,with 70%of advanced patients developing bone metastases,with a high mortality rate.In this sense,the bone marrow(BM)mesenchymal stem/stromal cel... Breast cancer is the predominant form of carcinoma among women worldwide,with 70%of advanced patients developing bone metastases,with a high mortality rate.In this sense,the bone marrow(BM)mesenchymal stem/stromal cells(MSCs)are critical for BM/bone homeostasis,and failures in their functionality,transform the BM into a premetastatic niche(PMN).We previously found that BM-MSCs from advanced breast cancer patients(BCPs,infiltrative ductal carcinoma,stage III-B)have an abnormal profile.This work aims to study some of the metabolic and molecular mechanisms underlying MSCs shift from a normal to an abnormal profile in this group of patients.A comparative analysis was undertaken,which included self-renewal capacity,morphology,proliferation capacity,cell cycle,reactive oxygen species(ROS)levels,and senescence-associatedβ‑galactosidase(SA‑β‑gal)staining of BMderived MSCs isolated from 14 BCPs and 9 healthy volunteers(HVs).Additionally,the expression and activity of the telomerase subunit TERT,as well as telomere length,were measured.Expression levels of pluripotency,osteogenic,and osteoclastogenic genes(OCT-4,SOX-2,M-CAM,RUNX-2,BMP-2,CCL-2,M-CSF,and IL-6)were also determined.The results showed that MSCs from BCPs had reduced,self-renewal and proliferation capacity.These cells also exhibited inhibited cell cycle progression and phenotypic changes,such as an enlarged and flattened appearance.Additionally,there was an increase in ROS and senescence levels and a decrease in the functional capacity of TERT to preserve telomere length.We also found an increase in pro-inflammatory/pro-osteoclastogenic gene expression and a decrease in pluripotency gene expression.We conclude that these changes could be responsible for the abnormal functional profile that MSCs show in this group of patients. 展开更多
关键词 Mesenchymal stem/stromal cells Senescence Breast cancer Bone marrow Pre-metastatic niche Bone metastasis
下载PDF
Heat shock protein 20 promotes sirtuin 1-dependent cell proliferation in induced pluripotent stem cells 被引量:2
2
作者 Mujib Ullah Nicole Pek Min Qian +1 位作者 gustavo yannarelli Asma Akbar 《World Journal of Stem Cells》 SCIE 2021年第6期659-669,共11页
BACKGROUND Heat shock proteins(HSPs)are molecular chaperones that protect cells against cellular stresses or injury.However,it has been increasingly recognized that they also play crucial roles in regulating fundament... BACKGROUND Heat shock proteins(HSPs)are molecular chaperones that protect cells against cellular stresses or injury.However,it has been increasingly recognized that they also play crucial roles in regulating fundamental cellular processes.HSP20 has been implicated in cell proliferation,but conflicting studies have shown that it can either promote or suppress proliferation.The underlying mechanisms by which HSP20 regulates cell proliferation and pluripotency remain unexplored.While the effect of HSP20 on cell proliferation has been recognized,its role in inducing pluripotency in human-induced pluripotent stem cells(iPSCs)has not been addressed.AIM To evaluate the efficacy of HSP20 overexpression in human iPSCs and evaluate the ability to promote cell proliferation.The purpose of this study was to investigate whether overexpression of HSP20 in iPSCs can increase pluripotency and regeneration.METHODS We used iPSCs,which retain their potential for cell proliferation.HSP20 overexpression effectively enhanced cell proliferation and pluripotency.Overexpression of HSP20 in iPSCs was characterized by immunocytochemistry staining and realtime polymerase chain reaction.We also used cell culture,cell counting,western blotting,and flow cytometry analyses to validate HSP20 overexpression and its mechanism.RESULTS This study demonstrated that overexpression of HSP20 can increase the pluripotency in iPSCs.Furthermore,by overexpressing HSP20 in iPSCs,we showed that HSP20 upregulated proliferation markers,induced pluripotent genes,and drove cell proliferation in a sirtuin 1(SIRT1)-dependent manner.These data have practical applications in the field of stem cell-based therapies where the mass expansion of cells is needed to generate large quantities of stem cell-derived cells for transplantation purposes.CONCLUSION We found that the overexpression of HSP20 enhanced the proliferation of iPSCs in a SIRT1-dependent manner.Herein,we established the distinct crosstalk between HSP20 and SIRT1 in regulating cell proliferation and pluripotency.Our study provides novel insights into the mechanisms controlling cell proliferation that can potentially be exploited to improve the expansion and pluripotency of human iPSCs for cell transplantation therapies.These results suggest that iPSCs overexpressing HSP20 exert regenerative and proliferative effects and may have the potential to improve clinical outcomes. 展开更多
关键词 Heat shock proteins Stem cells PROLIFERATION Induced pluripotent stem cells Sirtuin-1 Heat shock protein 20 PLURIPOTENCY
下载PDF
Applications of artificial intelligence in, early detection of cancer, clinical diagnosis and personalized medicine 被引量:1
3
作者 Mujib Ullah Asma Akbar gustavo yannarelli 《Artificial Intelligence in Cancer》 2020年第2期39-44,共6页
Artificial intelligence(AI)refers to the simulation of human intelligence in machines programmed to convert raw input data into decision-making actions,like humans.AI programs are designed to make decisions,often usin... Artificial intelligence(AI)refers to the simulation of human intelligence in machines programmed to convert raw input data into decision-making actions,like humans.AI programs are designed to make decisions,often using deep learning and computer-guided programs that analyze and process raw data into clinical decision making for effective treatment.New techniques for predicting cancer at an early stage are needed as conventional methods have poor accuracy and are not applicable to personalized medicine.AI has the potential to use smart,intelligent computer systems for image interpretation and early diagnosis of cancer.AI has been changing almost all the areas of the medical field by integrating with new emerging technologies.AI has revolutionized the entire health care system through innovative digital diagnostics with greater precision and accuracy.AI is capable of detecting cancer at an early stage with accurate diagnosis and improved survival outcomes.AI is an innovative technology of the future that can be used for early prediction,diagnosis and treatment of cancer. 展开更多
关键词 Artificial intelligence CANCER Clinical tumor prediction Early detection of cancer Clinical diagnosis Personalized medicine
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部