Synergism and antagonism of cadmium (Cd), copper (Cu) and selenium (Se) to biological toxicities in red soil, yellow brown soil and black soil were evaluated by MICROTOX method. The relation between forms of the teste...Synergism and antagonism of cadmium (Cd), copper (Cu) and selenium (Se) to biological toxicities in red soil, yellow brown soil and black soil were evaluated by MICROTOX method. The relation between forms of the tested metals in soil and the synergism or antagonism between them was also studied.Results showed that owing to the difference of soil chemical properties, toxicity of these metals in soils was different. In red soil with acid reaction and low in cation exchange capacity, antagonism occurred significantly between metals when they coexisted at high concentrations, while synergism occurred only under low concentrations. It is indicated that in red soil, toxicity of metals affected by synergism or antagonism depends on concentration of the metals present. For yellow brown soil and black soil with larger cation exchange capacity and lower exchangeable aluminium (A1), no toxicity of metals was observed even if metals were added to soil in high concentrations. Synergism and antagonism between Cd, Cu and Se were controlled by the forms of metals present. The amount of water-soluble metals was the most important factor in determining synergism and antagonism.In this paper, comparisons of synergism and antagonism between metals in soils and in water solutions were made. There occurred the synergism of metal toxicity in water solutions when the concentration of coexisting metals was high. This is just opposite to the case in soils.展开更多
Results from laboratory experiments indicated that the concentrations and toxicities of both water-soluble and 0.1 M HCl-extractable Cu and Cd from soils were in the order of red soil> yellow brown earth> black ...Results from laboratory experiments indicated that the concentrations and toxicities of both water-soluble and 0.1 M HCl-extractable Cu and Cd from soils were in the order of red soil> yellow brown earth> black earth.The toxicity of soil varied with the concentrations of metals.The form,concentration and toxicity of Cu and Cd in soils were determined by cation exchange capacity,content of organic matter and composition of clay minerals in the soil.Addition of CaCO3 could significantly decrease the concentration and toxicity of water-soluble and 0.1 M HCl-extractable Cu or Cd from the red soil,and could notably transform the Cu and Cd from the water-soluble or exchangeable form into the organic,free oxides-occluded or sulfic form.展开更多
文摘Synergism and antagonism of cadmium (Cd), copper (Cu) and selenium (Se) to biological toxicities in red soil, yellow brown soil and black soil were evaluated by MICROTOX method. The relation between forms of the tested metals in soil and the synergism or antagonism between them was also studied.Results showed that owing to the difference of soil chemical properties, toxicity of these metals in soils was different. In red soil with acid reaction and low in cation exchange capacity, antagonism occurred significantly between metals when they coexisted at high concentrations, while synergism occurred only under low concentrations. It is indicated that in red soil, toxicity of metals affected by synergism or antagonism depends on concentration of the metals present. For yellow brown soil and black soil with larger cation exchange capacity and lower exchangeable aluminium (A1), no toxicity of metals was observed even if metals were added to soil in high concentrations. Synergism and antagonism between Cd, Cu and Se were controlled by the forms of metals present. The amount of water-soluble metals was the most important factor in determining synergism and antagonism.In this paper, comparisons of synergism and antagonism between metals in soils and in water solutions were made. There occurred the synergism of metal toxicity in water solutions when the concentration of coexisting metals was high. This is just opposite to the case in soils.
文摘Results from laboratory experiments indicated that the concentrations and toxicities of both water-soluble and 0.1 M HCl-extractable Cu and Cd from soils were in the order of red soil> yellow brown earth> black earth.The toxicity of soil varied with the concentrations of metals.The form,concentration and toxicity of Cu and Cd in soils were determined by cation exchange capacity,content of organic matter and composition of clay minerals in the soil.Addition of CaCO3 could significantly decrease the concentration and toxicity of water-soluble and 0.1 M HCl-extractable Cu or Cd from the red soil,and could notably transform the Cu and Cd from the water-soluble or exchangeable form into the organic,free oxides-occluded or sulfic form.