Bacterial cellulose (BC) is a versatile biomaterial with unique properties that make it promising for various biomedical applications, including wound healing. The extracellular matrix (ECM) plays a crucial role in wo...Bacterial cellulose (BC) is a versatile biomaterial with unique properties that make it promising for various biomedical applications, including wound healing. The extracellular matrix (ECM) plays a crucial role in wound healing, providing a structural scaffold and signaling cues for cell migration and proliferation. This study investigates the potential of BC as a scaffold for ECM production and its effect on in vivo wound healing. In this work, the bacterial cellulose fermentation process is modified by the addition of Green Propolis and Usnic acid to the culture medium and natural materials before the bacteria are inoculated. In vivo behaviour using natural membranes for regenerative medicine is presented and it is in edit. Overall, our findings demonstrate the potential of BC as a scaffold for ECM production and its beneficial effects on in vivo wound healing. BC-based dressings may offer a novel approach to promoting wound healing and tissue regeneration in clinical settings. Further studies are warranted to optimize BC-based therapies and explore their full potential in regenerative medicine.展开更多
Bacterial cellulose (BC) is established as a newest biomaterial, and it can be used for medical and odontology applications. In addition, it has called attention for uses such as membrane for wound care and tissue eng...Bacterial cellulose (BC) is established as a newest biomaterial, and it can be used for medical and odontology applications. In addition, it has called attention for uses such as membrane for wound care and tissue engineering. In this work, the bacterial cellulose fermentation process is modified by the addition of natural materials before the bacteria are inoculated. In vivo behavior using natural ECM for regenerative medicine is presented and completed wound healing process is 3 months.展开更多
<span style="font-family:Verdana;">Cancer cells can be proliferating in a few months and years</span><span style="font-family:Verdana;">.</span><span style="font-fam...<span style="font-family:Verdana;">Cancer cells can be proliferating in a few months and years</span><span style="font-family:Verdana;">.</span><span style="font-family:Verdana;"> It depends </span><span style="font-family:Verdana;">on</span><span style="font-family:Verdana;"> cancer stage. Chemotherapy, immunotherapy and anti-metabolic drugs have been used in order to kill cancer cells and prevent immune system weakly and metastasis. However, such drugs can damage healthy cells too. Natural ways to cancer treatments may help whole body to cancer cells. In this work, it was taking off cancer nodule to skin cancer by surgery and we treat the nodule as wound, using Nanoskin</span><sup><span style="font-family:Verdana;"><sup></sup></span><span style="font-family:Verdana;background-color:#FFFFFF;"><sup><span style="font-family:Verdana, Helvetica, Arial;">®</sup></span></span></sup><span style="font-family:Verdana;"></span><span style="font-family:Verdana;"> advance cell therapy (ACT), natural extra cellular matrix which releases nutrients to the skin cancer. Our result shows that the cancer nodule disappear</span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> in few weeks in skin, because of natural membrane treatment. In addition, we obtained complete wound healing due anticancer nutrients (beta-glucan) delivery to skin.</span>展开更多
Natural extracellular matrices (ECMs) perform the tasks necessary for tissue formation, maintenance, regulation and function, providing a powerful means of controlling the biological performance of regenerative materi...Natural extracellular matrices (ECMs) perform the tasks necessary for tissue formation, maintenance, regulation and function, providing a powerful means of controlling the biological performance of regenerative materials. In addition, biomedical materials have claimed attention because of the increased interest in tissue engineering materials for wound care and regenerative medicine. Moreover, the nanostructure and morphological similarities with collagen make BC attractive for cell immobilization, cell support and Natural Extracellular Matrix (ECM) Scaffolds. In this work, we present the extracellular matrix (ECM) using the bacterial cellulose (Nanoskin<sup>®</sup>) which regulates cell behavior by influencing cell proliferation, survival, shape, migration and differentiation. Bacterial cellulose fermentation process is modified before the bacteria are inoculated for mimicking ECM to cells support and built new local material for wound healing. Chemical groups influences and thermal behavior in bacterial cellulose were analyzed using transmission infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA), respectively. Besides, In vivo analysis was evaluated with clinical study at Sharjah Kuwait Hospital.展开更多
Bacterial cellulose (BC)-Nanoskin<span style="white-space:nowrap;"><sup><span style="white-space:nowrap;">®</span></sup></span> has become established a...Bacterial cellulose (BC)-Nanoskin<span style="white-space:nowrap;"><sup><span style="white-space:nowrap;">®</span></sup></span> has become established as a new biomaterial and can be used in several medicine areas, especially for medical devices mainly in dental and orthopedics applications. In addition, biomaterials have rise because of the increased interest in tissue engineering and regeneratine medicine materials for wound care and skin cancer treatment. The BC process production can be changed by different fermentation process. It has particular properties that make it an ideal candidate as a medical material: high mechanical properties, biocompatibility to the host tissue, and production in various shapes and sizes. This review describes a behavior investigation of this biomaterial in human medicine with bacterial cellulose, skin cancer, covid-19 and 3-D print for medical area.展开更多
3D printing is the future. It will change the way in which we produce new materials—maybe much less in factories and much easier in shops. However, biobased materials have been difficult to 3D print. Most 3D printers...3D printing is the future. It will change the way in which we produce new materials—maybe much less in factories and much easier in shops. However, biobased materials have been difficult to 3D print. Most 3D printers use heat to melt the plastic or metal to be printed, and biobased materials are degraded. But cellulose nanofibrils have a solution to this problem: the printing paste is wet and dries out to a solid material. In this work, it was showed recent wound healing in Vinous Ulcer with kidney and other health complications using bacterial cellulose 3D print membranes.展开更多
Bacterial cellulose (BC) can be used in wide area of applied scientific, especially for tissue regeneration and regenerative medicine, lately, bacterial cellulose mats are used in the treatment of skin conditions such...Bacterial cellulose (BC) can be used in wide area of applied scientific, especially for tissue regeneration and regenerative medicine, lately, bacterial cellulose mats are used in the treatment of skin conditions such as burns and ulcers, because of the morphology of fibrous biopolymers serving as a support for cell proliferation, its pores allow gas exchange between the organism and the environment. Moreover, the nanostructure and morphological similarities with collagen make BC attractive for cell immobilization, cell support and Natural Extracellular Matrix (ECM) Scaffolds. In this scope, Natural ECM is the ideal biological scaffold since it contains all the components of the tissue. The development of mimicking biomaterials and hybrid biomaterial can further advance directed cellular differentiation without specific induction. The extracellular matrix (ECM) contains several signals that are received by cell surface receptors and contribute to cell adhesion and cell fate which control cellular activities such as proliferation, migration and differentiation. As such, regenerative medicine studies often rely on mimicking the natural ECM to promote the formation of new tissue by host cells, and characterization of natural ECM components is vital for the development of new biomimetic approaches. In this work, the bacterial cellulose fermentation process is modified by the addition of vegetal stem cell to the culture medium and natural materials before the bacteria are inoculated. In vivo behavior using natural ECM for regenerative medicine is presented.展开更多
Bacterial cellulose (BC) has established to be a remarkably versatile biomaterial and can be used in wide variety of applied scientific endeavours, especially for medical devices, lately, bacterial cellulose mats are ...Bacterial cellulose (BC) has established to be a remarkably versatile biomaterial and can be used in wide variety of applied scientific endeavours, especially for medical devices, lately, bacterial cellulose mats are used in the treatment of skin conditions such as burns and ulcers, because of the morphology of fibrous biopolymers serving as a support for cell proliferation, its pores allow gas exchange between the organism and the environment. Moreover, the nanostructure and morphological similarities with collagen make BC attractive for cell immobilization and cell support. In this work, we obtain first electrospun bacterial cellulose mats after chemical treatment and without conductive additives. With DMA/LiClmechanism dissolution, modified bacterial cellulose was easily electrospun in chloroform/acetone solvents in comparison with BC unmodified. FTIR peaks results are consistent with proposed interactions between cellulose and DMA/LiCl solvent system.展开更多
文摘Bacterial cellulose (BC) is a versatile biomaterial with unique properties that make it promising for various biomedical applications, including wound healing. The extracellular matrix (ECM) plays a crucial role in wound healing, providing a structural scaffold and signaling cues for cell migration and proliferation. This study investigates the potential of BC as a scaffold for ECM production and its effect on in vivo wound healing. In this work, the bacterial cellulose fermentation process is modified by the addition of Green Propolis and Usnic acid to the culture medium and natural materials before the bacteria are inoculated. In vivo behaviour using natural membranes for regenerative medicine is presented and it is in edit. Overall, our findings demonstrate the potential of BC as a scaffold for ECM production and its beneficial effects on in vivo wound healing. BC-based dressings may offer a novel approach to promoting wound healing and tissue regeneration in clinical settings. Further studies are warranted to optimize BC-based therapies and explore their full potential in regenerative medicine.
文摘Bacterial cellulose (BC) is established as a newest biomaterial, and it can be used for medical and odontology applications. In addition, it has called attention for uses such as membrane for wound care and tissue engineering. In this work, the bacterial cellulose fermentation process is modified by the addition of natural materials before the bacteria are inoculated. In vivo behavior using natural ECM for regenerative medicine is presented and completed wound healing process is 3 months.
文摘<span style="font-family:Verdana;">Cancer cells can be proliferating in a few months and years</span><span style="font-family:Verdana;">.</span><span style="font-family:Verdana;"> It depends </span><span style="font-family:Verdana;">on</span><span style="font-family:Verdana;"> cancer stage. Chemotherapy, immunotherapy and anti-metabolic drugs have been used in order to kill cancer cells and prevent immune system weakly and metastasis. However, such drugs can damage healthy cells too. Natural ways to cancer treatments may help whole body to cancer cells. In this work, it was taking off cancer nodule to skin cancer by surgery and we treat the nodule as wound, using Nanoskin</span><sup><span style="font-family:Verdana;"><sup></sup></span><span style="font-family:Verdana;background-color:#FFFFFF;"><sup><span style="font-family:Verdana, Helvetica, Arial;">®</sup></span></span></sup><span style="font-family:Verdana;"></span><span style="font-family:Verdana;"> advance cell therapy (ACT), natural extra cellular matrix which releases nutrients to the skin cancer. Our result shows that the cancer nodule disappear</span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> in few weeks in skin, because of natural membrane treatment. In addition, we obtained complete wound healing due anticancer nutrients (beta-glucan) delivery to skin.</span>
文摘Natural extracellular matrices (ECMs) perform the tasks necessary for tissue formation, maintenance, regulation and function, providing a powerful means of controlling the biological performance of regenerative materials. In addition, biomedical materials have claimed attention because of the increased interest in tissue engineering materials for wound care and regenerative medicine. Moreover, the nanostructure and morphological similarities with collagen make BC attractive for cell immobilization, cell support and Natural Extracellular Matrix (ECM) Scaffolds. In this work, we present the extracellular matrix (ECM) using the bacterial cellulose (Nanoskin<sup>®</sup>) which regulates cell behavior by influencing cell proliferation, survival, shape, migration and differentiation. Bacterial cellulose fermentation process is modified before the bacteria are inoculated for mimicking ECM to cells support and built new local material for wound healing. Chemical groups influences and thermal behavior in bacterial cellulose were analyzed using transmission infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA), respectively. Besides, In vivo analysis was evaluated with clinical study at Sharjah Kuwait Hospital.
文摘Bacterial cellulose (BC)-Nanoskin<span style="white-space:nowrap;"><sup><span style="white-space:nowrap;">®</span></sup></span> has become established as a new biomaterial and can be used in several medicine areas, especially for medical devices mainly in dental and orthopedics applications. In addition, biomaterials have rise because of the increased interest in tissue engineering and regeneratine medicine materials for wound care and skin cancer treatment. The BC process production can be changed by different fermentation process. It has particular properties that make it an ideal candidate as a medical material: high mechanical properties, biocompatibility to the host tissue, and production in various shapes and sizes. This review describes a behavior investigation of this biomaterial in human medicine with bacterial cellulose, skin cancer, covid-19 and 3-D print for medical area.
文摘3D printing is the future. It will change the way in which we produce new materials—maybe much less in factories and much easier in shops. However, biobased materials have been difficult to 3D print. Most 3D printers use heat to melt the plastic or metal to be printed, and biobased materials are degraded. But cellulose nanofibrils have a solution to this problem: the printing paste is wet and dries out to a solid material. In this work, it was showed recent wound healing in Vinous Ulcer with kidney and other health complications using bacterial cellulose 3D print membranes.
文摘Bacterial cellulose (BC) can be used in wide area of applied scientific, especially for tissue regeneration and regenerative medicine, lately, bacterial cellulose mats are used in the treatment of skin conditions such as burns and ulcers, because of the morphology of fibrous biopolymers serving as a support for cell proliferation, its pores allow gas exchange between the organism and the environment. Moreover, the nanostructure and morphological similarities with collagen make BC attractive for cell immobilization, cell support and Natural Extracellular Matrix (ECM) Scaffolds. In this scope, Natural ECM is the ideal biological scaffold since it contains all the components of the tissue. The development of mimicking biomaterials and hybrid biomaterial can further advance directed cellular differentiation without specific induction. The extracellular matrix (ECM) contains several signals that are received by cell surface receptors and contribute to cell adhesion and cell fate which control cellular activities such as proliferation, migration and differentiation. As such, regenerative medicine studies often rely on mimicking the natural ECM to promote the formation of new tissue by host cells, and characterization of natural ECM components is vital for the development of new biomimetic approaches. In this work, the bacterial cellulose fermentation process is modified by the addition of vegetal stem cell to the culture medium and natural materials before the bacteria are inoculated. In vivo behavior using natural ECM for regenerative medicine is presented.
文摘Bacterial cellulose (BC) has established to be a remarkably versatile biomaterial and can be used in wide variety of applied scientific endeavours, especially for medical devices, lately, bacterial cellulose mats are used in the treatment of skin conditions such as burns and ulcers, because of the morphology of fibrous biopolymers serving as a support for cell proliferation, its pores allow gas exchange between the organism and the environment. Moreover, the nanostructure and morphological similarities with collagen make BC attractive for cell immobilization and cell support. In this work, we obtain first electrospun bacterial cellulose mats after chemical treatment and without conductive additives. With DMA/LiClmechanism dissolution, modified bacterial cellulose was easily electrospun in chloroform/acetone solvents in comparison with BC unmodified. FTIR peaks results are consistent with proposed interactions between cellulose and DMA/LiCl solvent system.