A new approach to target development for laboratory astrophysics experiments at high-power laser facilities is presented.With the dawn of high-power lasers,laboratory astrophysics has emerged as a field,bringing insig...A new approach to target development for laboratory astrophysics experiments at high-power laser facilities is presented.With the dawn of high-power lasers,laboratory astrophysics has emerged as a field,bringing insight into physical processes in astrophysical objects,such as the formation of stars.An important factor for success in these experiments is targetry.To date,targets have mainly relied on expensive and challenging microfabrication methods.The design presented incorporates replaceable machined parts that assemble into a structure that defines the experimental geometry.This can make targets cheaper and faster to manufacture,while maintaining robustness and reproducibility.The platform is intended for experiments on plasma flows,but it is flexible and may be adapted to the constraints of other experimental setups.Examples of targets used in experimental campaigns are shown,including a design for insertion in a high magnetic field coil.Experimental results are included,demonstrating the performance of the targets.展开更多
Targets with microstructured front surfaces have shown great potential in improving high-intensity laser–matter interaction.We present cone-shaped microstructures made out of silicon and titanium created by ultrashor...Targets with microstructured front surfaces have shown great potential in improving high-intensity laser–matter interaction.We present cone-shaped microstructures made out of silicon and titanium created by ultrashort laser pulse processing with different characteristics.In addition,we illustrate a process chain based on moulding to recreate the laser-processed samples out of polydimethylsiloxane,polystyrol and copper.With all described methods,samples of large sizes can be manufactured,therefore allowing time-efficient,cost-reduced and reliable ways to fabricate large quantities of identical targets.展开更多
Ultrashort laser pulses are used to create surface structures on thin(25 μm) silicon(Si) wafers. Scanning the wafer with a galvanometric mirror system creates large homogeneously structured areas. The variety of stru...Ultrashort laser pulses are used to create surface structures on thin(25 μm) silicon(Si) wafers. Scanning the wafer with a galvanometric mirror system creates large homogeneously structured areas. The variety of structure shapes that can be generated with this method is exemplified by the analysis of shape, height and distance of structures created in the ambient media air and isopropanol. A study of the correlation between structure height and remaining wafer thickness is presented. The comparatively easy manufacturing technique and the structure variety that allows for custom-tailored targets show great potential for high repetition rate ion acceleration experiments.展开更多
基金Additional funding was provided by the Student Grant Competition of CTU(No.SGS22/180/OHK4/3T/14)the Ministry of Education,Youth&Sports of the Czech Republic(No.LM2018114)+1 种基金the Horizon 2020 project Laserlab-Europe V(No.871124)This work was funded by the Helmholtz Association(No.VHNG-1338).
文摘A new approach to target development for laboratory astrophysics experiments at high-power laser facilities is presented.With the dawn of high-power lasers,laboratory astrophysics has emerged as a field,bringing insight into physical processes in astrophysical objects,such as the formation of stars.An important factor for success in these experiments is targetry.To date,targets have mainly relied on expensive and challenging microfabrication methods.The design presented incorporates replaceable machined parts that assemble into a structure that defines the experimental geometry.This can make targets cheaper and faster to manufacture,while maintaining robustness and reproducibility.The platform is intended for experiments on plasma flows,but it is flexible and may be adapted to the constraints of other experimental setups.Examples of targets used in experimental campaigns are shown,including a design for insertion in a high magnetic field coil.Experimental results are included,demonstrating the performance of the targets.
基金the DFG in the framework of the Excellence Initiative,Darmstadt Graduate School of Excellence Energy Science and Engineering(GSC 1070)the BMBF(05P19RDFA1)and the Hessian Ministry for Science and the Arts(HMWK)through the LOEWE Research Cluster Nuclear Photonics at TU Darmstadt.
文摘Targets with microstructured front surfaces have shown great potential in improving high-intensity laser–matter interaction.We present cone-shaped microstructures made out of silicon and titanium created by ultrashort laser pulse processing with different characteristics.In addition,we illustrate a process chain based on moulding to recreate the laser-processed samples out of polydimethylsiloxane,polystyrol and copper.With all described methods,samples of large sizes can be manufactured,therefore allowing time-efficient,cost-reduced and reliable ways to fabricate large quantities of identical targets.
基金financial support by the DFG in the framework of the Excellence Initiative, Darmstadt Graduate School of Excellence Energy Science and Engineering (GSC 1070)the target laboratory of the Nuclear Physics Department, TU Darmstadt, for their support
文摘Ultrashort laser pulses are used to create surface structures on thin(25 μm) silicon(Si) wafers. Scanning the wafer with a galvanometric mirror system creates large homogeneously structured areas. The variety of structure shapes that can be generated with this method is exemplified by the analysis of shape, height and distance of structures created in the ambient media air and isopropanol. A study of the correlation between structure height and remaining wafer thickness is presented. The comparatively easy manufacturing technique and the structure variety that allows for custom-tailored targets show great potential for high repetition rate ion acceleration experiments.