Although conventional coal mine designs are conservative regarding pillar strength,local failures such as roof-falls and pillar bursts still affect mine safety and operations.Previous studies have identified that disc...Although conventional coal mine designs are conservative regarding pillar strength,local failures such as roof-falls and pillar bursts still affect mine safety and operations.Previous studies have identified that discontinuous,layered roof materials have some self-supporting capacity.This research is a preliminary step towards understanding these mechanics in coal-measure rocks.Although others have considered broad conceptual models and simplified analogs for mine roof behavior,this study presents a unique numerical model that more completely represents in-situ roof conditions.The discrete element method(DEM)is utilized to conduct a parametric analysis considering a range of in-situ stress ratios,material properties,and joint networks to determine the parameters controlling the stability of single-entries modeled in two-dimensions.Model results are compared to empirical observations of roof-support effectiveness(ARBS)in the context of the coal mine roof rating(CMRR)system.Results such as immediate roof displacement,overall stability,and statistical relationships between model parameters and outcomes are presented herein.Potential practical applications of this line of research include:(1)roof-support optimization for a range of coal-measure rocks,(2)establishment of a relationship between roof stability and pillar stress,and(3)determination of which parameters are most critical to roof stability and therefore require concentrated evaluation.展开更多
Changes of failure mechanism with increasing confinement,from extensional to shear-dominated failure,are widely observed in the rupture of intact specimens at the laboratory scale and in rock masses.In an analysis pub...Changes of failure mechanism with increasing confinement,from extensional to shear-dominated failure,are widely observed in the rupture of intact specimens at the laboratory scale and in rock masses.In an analysis published in 2018,both unconfined and triaxial compressive tests were conducted to investigate the strength characteristics of 84 specimens of a Utah coal,including the spalling limits,the ratio of apparent unconfined compressive strength to unconfined compressive strength(UCS),the damage characteristics,and the post-yield dilatancy.These mechanical characteristics were found to be strongly anisotropic as a function of the orientation of the cleats relative to the loading direction,defined as the included angle.A total of four different included angles were used in the work performed in 2018.The authors found that the degree of anisotropic strength differed according to the included angle.However,the transition from extensional to shear failure at the given confinements was not clearly identified.In this study,a total of 20 specimens were additionally prepared from the same coal sample used in the previous study and then tested under both unconfined and triaxial compressive conditions.Because the authors already knew the most contrasting cases of the included angles from the previous work using the four included angles,they chose only two of the included angles(0°and 30°)for this study.For the triaxial compressive tests,a greater confining stress than the mean UCS was applied to the specimens in an attempt to identify the brittle-ductile transition of the coal.The new results have been compiled with the previous results in order to re-evaluate the confinement-dependency of the coal behavior.Additionally,the different confining stresses are used as analogs for different width-to-height(W/H)conditions of pillar strength.Although the W/H ratios of the specimens were not directly considered during testing,the equivalent W/H ratios of a pillar as a function of the confining stresses were estimated using an existing empirical solution.According to this relationship,the W/H at which in situ pillar behavior would be expected to transition from brittle to ductile is identified.展开更多
The coal mine roof rating(CMRR) was developed to bridge the gap between geological variation in underground coal mines and engineering design. The CMRR accounts for the compressive strength of the immediate roof, the ...The coal mine roof rating(CMRR) was developed to bridge the gap between geological variation in underground coal mines and engineering design. The CMRR accounts for the compressive strength of the immediate roof, the shear strength and intensity of any discontinuities present, and the moisture sensitivity of the immediate roof. The CMRR has been widely used and validated in Eastern US coal mines, but it has seen limited application in the Western US. This study focuses on roof behavior at a Western coal mine(Mine A). Mine A shows significant lateral geological variation, along with localized faulting and a laterally extensive sandstone channel network. The CMRR is not used to predict roof instability at the mine. It is, therefore, hypothesized that there are other factors that are correlated with roof instability in underground coal mines that could potentially also be considered in conjunction with the CMRR.This hypothesis was tested by collecting 30 CMRR measurements at Mine A. At each measurement location, a binary record of the roof condition(stable or unstable) was made, and other parameters such as depth of cover, presence of faulting, and sandstone channels were also recorded. ANOVA tests showed that the CMRR values and the roof conditions were not strongly correlated, indicating that the CMRR input criteria are not fully predictive of roof stability at this mine. The CMRR values showed statistically significant correlations(p less than 0.05) with faulting as well as with location at an intersection. For areas that had previously experienced roof fall but were currently stable, faulting was correlated with roof condition(p less than 0.05) only when the condition was classified as unstable.展开更多
With recent advances in numerical modeling, design of underground structures increasingly relies on numerical modeling-based analysis approaches. While modeling tools like the discrete element method(DEM) and the comb...With recent advances in numerical modeling, design of underground structures increasingly relies on numerical modeling-based analysis approaches. While modeling tools like the discrete element method(DEM) and the combined finite-discrete element method(FDEM) are useful for investigating small-scale damage processes, continuum models remain the primary practical tool for most field-scale problems.The results obtained from such models are significantly dependent on the selection of an appropriate yield criterion and dilation angle. Towards improving its capabilities in handling mining-related problems, the authors have previously developed a new yield criterion(called progressive S-shaped criterion). The focus of the current study is to demonstrate its use in modeling rock pillars through a comparative analysis against four other yield criteria. In addition to the progressive S-shaped criterion,only one out of the four other criteria predicted a trend in strength consistent with an empirical pillar strength database compiled from the literature. Given the closely-knit relationship between yield criteria and dilation angle in controlling the overall damage process, a separate comparison was conducted using a mobilized dilation model, a zero degree dilation angle and a constant non-zero dilation angle. This study also investigates the impact of meso-scale heterogeneity in mechanical properties on the overall model response by assigning probability distributions to the input parameters. The comparisons revealed that an isotropic model using a combination of progressive S-shaped criterion and mobilized dilation angle model is sufficient in capturing the behaviors of rock pillars. Subsequently, the pillar model was used to assess the effect of L/W(length/width) ratio on the peak strength.展开更多
Spalling of pillar ribs has been a major hazard in the mining industry for decades.In the absence of rib support guidelines,accidents have continued to occur in recent years.Developing effective support guidelines req...Spalling of pillar ribs has been a major hazard in the mining industry for decades.In the absence of rib support guidelines,accidents have continued to occur in recent years.Developing effective support guidelines requires a complete understanding of complex pillar damage mechanisms.Continuum models represent a convenient tool for analyzing this problem,but the behavior of such models is dependent of the choice of the constitutive model.In this study,a recently proposed constitutive model was used to simulate the rib fracturing process in a longwall chain pillar at West Cliff mine.After calibration,the model was able to capture the rib displacement profiles for multiple locations of the longwall face and the stress evolution 4 m into the pillar.The rib bolts in the model were found to be yielding over 60% of their length under the headgate loading condition.The model also predicted a steady damage accumulation in the rib for certain face locations,which is consistent with the description of the rib at the site.Damage was localized along the upper part of the pillar and underscored the role that the dirt band played in controlling rib deterioration at the site.The ability of the numerical model to replicate field measurements provides confidence in the capabilities of the new constitutive model.Finally,the need of using multi-point calibration is highlighted by comparing the results of the calibrated model to an alternative model calibrated to a smaller amount of data.展开更多
Roof bolting has long been used in underground mines across the world to provide ground support.Modern roof bolts are cheap and easy to install with the use of specialized machines as a part of the production cycle. L...Roof bolting has long been used in underground mines across the world to provide ground support.Modern roof bolts are cheap and easy to install with the use of specialized machines as a part of the production cycle. Lhoist North America’s Crab Orchard Mine is an underground room and pillar limestone mine that uses mechanically anchored roof bolts for ground support. The mine currently employs two different roof bolting patterns: a standard 1.5 × 1.5 m pattern, and another 0.8 × 0.8 m pattern for use in areas with particularly hazardous roof conditions. The purpose of this study is to evaluate the relative effectiveness of each bolting pattern. A series of numerical models were created using Roc Science’s RS2. The models were based on a symmetrical section of the mine at its deepest point, and were modeled using generalized Hoek-Brown failure criterion along with a discrete fracture network. A series of sensitivity analyses were performed on the models by varying parameters such as joint friction angle, crack persistence, joint randomization, and tensile strength of the limestone. Based on the results of the original models and sensitivity analyses, it appeared that the standard bolting pattern provided sufficient roof support capacity under almost all the expected conditions at the mine, since safety factors below the design value of 1.5 were only found for individual bolts in a few of the worst test cases considered.These results can help improve the mine’s productivity and reduce operating costs without compromising safety.展开更多
Numerical back analysis is a valuable tool available to rock mechanics researchers and practitioners.Recent studies related to back analysis methods focused primarily on applications of increasingly sophisticated opti...Numerical back analysis is a valuable tool available to rock mechanics researchers and practitioners.Recent studies related to back analysis methods focused primarily on applications of increasingly sophisticated optimization algorithms(primarily machine learning algorithms)to rock mechanics problems.These methods have typically been applied to relatively simple problems;however,more complex back analyses continue to be conducted primarily through ad hoc manual trial-and-error processes.This paper provides a review of the basic concepts and recent developments in the field of numerical back analysis for rock mechanics,as well as some discussion of the relationship between back analysis and more broadly established frameworks for numerical modelling.The challenges of flexible constraints,non-uniqueness,material model limitations,and disparate data sources are considered,and representative case studies are presented to illustrate their impacts on back analyses.The role of back analysis(or“model calibration”)in bonded particle modelling(BPM),bonded block modelling(BBM),and synthetic rock mass(SRM)modelling is also considered,and suggestions are made for further studies on this topic.展开更多
The residual strength of rocks and rock masses is an important parameter to be constrained for analysis and design purposes in many rock engineering applications.A residual strength envelope in principal stress space ...The residual strength of rocks and rock masses is an important parameter to be constrained for analysis and design purposes in many rock engineering applications.A residual strength envelope in principal stress space is typically developed using residual strength data obtained from compression tests on many different specimens of the same rock type.In this study,we examined the potential for use of the continuous-failure-state testing concept as a means to constrain the residual strength envelope using a limited number of specimens.Specifically,cylindrical specimens of three rock types(granodiorite,diabase,and Stanstead granite)were unloaded at the residual state such that a full residual strength envelope for each individual specimen was obtained.Using a residual strength model that introduces a single new strength parameter(the residual strength index,or RSI),the results of the continuous-failurestate unloading tests were compared to conventionally obtained residual strength envelopes.Overall,the continuous-failure-state residual strength data were found to be consistent with the conventional residual strength data.However,it was identified that the primary factor limiting an accurate characterization of the residual strength for a given rock type is not the amount of data for a given specimen,but the variety of specimens available to characterize the inherent variability of the rock unit of interest.Accordingly,the use of continuous-failure-state testing for estimation of the residual strength of a rock unit is only recommended when the number of specimens available for testing is very limited(i.e.<5).展开更多
Bonded blockmodel(BBM)has shownpotential in replicating rockmass behavior aswell as the rockesupport interactionmechanism,but their practical application is limited totwo dimensions due to the high associated computat...Bonded blockmodel(BBM)has shownpotential in replicating rockmass behavior aswell as the rockesupport interactionmechanism,but their practical application is limited totwo dimensions due to the high associated computational demand.To allow for the use of BBM in simulating three-dimensional(3D)problems,this study proposes an integrated 3D continuumetwo-dimensional(2D)discontinuum approach,in context of rock pillars.A cross-section of a granite pillar was simulated using a BBM with a load path from a calibrated mine-scale FLAC^(3D)model.Pillar support as employed in the mine was also incorporated in different stages during the simulation.Themodel was calibrated by varying the input parameters until the displacements at six locations within the pillarmatchedthosemeasuredby amulti-point borehole extensometer(MPBX)inthe field.The calibratedmodel was subsequently used to understand how the support and load path influenced the damage evolution in the pillar.The shear component of the load pathwas found to have amajor effect on the severity and extent of the damaged regions.When the support density was increased in the model,the lateral displacements along the pillar walls were significantly suppressed in a somewhat unpredictable manner.Thiswas explained by the interaction between the supports and the damaged regions at the corners,which ultimately modified the stresses along the pillar periphery.The amount of displacement reduction obtained by increasing the support density illustrates the potential of BBMto be used as a support design tool.展开更多
基金sponsored by the Alpha Foundation for the Improvement of Mine Safety and Health, Inc. (Alpha Foundation)the funding provided for this project by the Alpha Foundationpartially funded by the National Institute of Occupational Health and Science (NIOSH) under Grant Number 200-2016-90154.
文摘Although conventional coal mine designs are conservative regarding pillar strength,local failures such as roof-falls and pillar bursts still affect mine safety and operations.Previous studies have identified that discontinuous,layered roof materials have some self-supporting capacity.This research is a preliminary step towards understanding these mechanics in coal-measure rocks.Although others have considered broad conceptual models and simplified analogs for mine roof behavior,this study presents a unique numerical model that more completely represents in-situ roof conditions.The discrete element method(DEM)is utilized to conduct a parametric analysis considering a range of in-situ stress ratios,material properties,and joint networks to determine the parameters controlling the stability of single-entries modeled in two-dimensions.Model results are compared to empirical observations of roof-support effectiveness(ARBS)in the context of the coal mine roof rating(CMRR)system.Results such as immediate roof displacement,overall stability,and statistical relationships between model parameters and outcomes are presented herein.Potential practical applications of this line of research include:(1)roof-support optimization for a range of coal-measure rocks,(2)establishment of a relationship between roof stability and pillar stress,and(3)determination of which parameters are most critical to roof stability and therefore require concentrated evaluation.
文摘Changes of failure mechanism with increasing confinement,from extensional to shear-dominated failure,are widely observed in the rupture of intact specimens at the laboratory scale and in rock masses.In an analysis published in 2018,both unconfined and triaxial compressive tests were conducted to investigate the strength characteristics of 84 specimens of a Utah coal,including the spalling limits,the ratio of apparent unconfined compressive strength to unconfined compressive strength(UCS),the damage characteristics,and the post-yield dilatancy.These mechanical characteristics were found to be strongly anisotropic as a function of the orientation of the cleats relative to the loading direction,defined as the included angle.A total of four different included angles were used in the work performed in 2018.The authors found that the degree of anisotropic strength differed according to the included angle.However,the transition from extensional to shear failure at the given confinements was not clearly identified.In this study,a total of 20 specimens were additionally prepared from the same coal sample used in the previous study and then tested under both unconfined and triaxial compressive conditions.Because the authors already knew the most contrasting cases of the included angles from the previous work using the four included angles,they chose only two of the included angles(0°and 30°)for this study.For the triaxial compressive tests,a greater confining stress than the mean UCS was applied to the specimens in an attempt to identify the brittle-ductile transition of the coal.The new results have been compiled with the previous results in order to re-evaluate the confinement-dependency of the coal behavior.Additionally,the different confining stresses are used as analogs for different width-to-height(W/H)conditions of pillar strength.Although the W/H ratios of the specimens were not directly considered during testing,the equivalent W/H ratios of a pillar as a function of the confining stresses were estimated using an existing empirical solution.According to this relationship,the W/H at which in situ pillar behavior would be expected to transition from brittle to ductile is identified.
基金supported by a NIOSH Capacity Building grant (No. 200-2016-90154) to Drs. G. Walton and E. Holley and collaborators at the Colorado School of Mines
文摘The coal mine roof rating(CMRR) was developed to bridge the gap between geological variation in underground coal mines and engineering design. The CMRR accounts for the compressive strength of the immediate roof, the shear strength and intensity of any discontinuities present, and the moisture sensitivity of the immediate roof. The CMRR has been widely used and validated in Eastern US coal mines, but it has seen limited application in the Western US. This study focuses on roof behavior at a Western coal mine(Mine A). Mine A shows significant lateral geological variation, along with localized faulting and a laterally extensive sandstone channel network. The CMRR is not used to predict roof instability at the mine. It is, therefore, hypothesized that there are other factors that are correlated with roof instability in underground coal mines that could potentially also be considered in conjunction with the CMRR.This hypothesis was tested by collecting 30 CMRR measurements at Mine A. At each measurement location, a binary record of the roof condition(stable or unstable) was made, and other parameters such as depth of cover, presence of faulting, and sandstone channels were also recorded. ANOVA tests showed that the CMRR values and the roof conditions were not strongly correlated, indicating that the CMRR input criteria are not fully predictive of roof stability at this mine. The CMRR values showed statistically significant correlations(p less than 0.05) with faulting as well as with location at an intersection. For areas that had previously experienced roof fall but were currently stable, faulting was correlated with roof condition(p less than 0.05) only when the condition was classified as unstable.
基金funded by The National Institute for Occupational Safety and Health,USA(NIOSH)(Grant No.200-2016-90154)
文摘With recent advances in numerical modeling, design of underground structures increasingly relies on numerical modeling-based analysis approaches. While modeling tools like the discrete element method(DEM) and the combined finite-discrete element method(FDEM) are useful for investigating small-scale damage processes, continuum models remain the primary practical tool for most field-scale problems.The results obtained from such models are significantly dependent on the selection of an appropriate yield criterion and dilation angle. Towards improving its capabilities in handling mining-related problems, the authors have previously developed a new yield criterion(called progressive S-shaped criterion). The focus of the current study is to demonstrate its use in modeling rock pillars through a comparative analysis against four other yield criteria. In addition to the progressive S-shaped criterion,only one out of the four other criteria predicted a trend in strength consistent with an empirical pillar strength database compiled from the literature. Given the closely-knit relationship between yield criteria and dilation angle in controlling the overall damage process, a separate comparison was conducted using a mobilized dilation model, a zero degree dilation angle and a constant non-zero dilation angle. This study also investigates the impact of meso-scale heterogeneity in mechanical properties on the overall model response by assigning probability distributions to the input parameters. The comparisons revealed that an isotropic model using a combination of progressive S-shaped criterion and mobilized dilation angle model is sufficient in capturing the behaviors of rock pillars. Subsequently, the pillar model was used to assess the effect of L/W(length/width) ratio on the peak strength.
基金funded by the National Institute for Occupational Safety and Health(NIOSH)(Grant No.200-2016-90154)sponsored by the Alpha Foundation for the Improvement of Mine Safety and Health,Inc.(ALPHA FOUNDATION)。
文摘Spalling of pillar ribs has been a major hazard in the mining industry for decades.In the absence of rib support guidelines,accidents have continued to occur in recent years.Developing effective support guidelines requires a complete understanding of complex pillar damage mechanisms.Continuum models represent a convenient tool for analyzing this problem,but the behavior of such models is dependent of the choice of the constitutive model.In this study,a recently proposed constitutive model was used to simulate the rib fracturing process in a longwall chain pillar at West Cliff mine.After calibration,the model was able to capture the rib displacement profiles for multiple locations of the longwall face and the stress evolution 4 m into the pillar.The rib bolts in the model were found to be yielding over 60% of their length under the headgate loading condition.The model also predicted a steady damage accumulation in the rib for certain face locations,which is consistent with the description of the rib at the site.Damage was localized along the upper part of the pillar and underscored the role that the dirt band played in controlling rib deterioration at the site.The ability of the numerical model to replicate field measurements provides confidence in the capabilities of the new constitutive model.Finally,the need of using multi-point calibration is highlighted by comparing the results of the calibrated model to an alternative model calibrated to a smaller amount of data.
基金The research conducted for this study was funded by the National Institute for Occupational Safety and Health(NIOSH)under Grant Number 200-2016-90154.
文摘Roof bolting has long been used in underground mines across the world to provide ground support.Modern roof bolts are cheap and easy to install with the use of specialized machines as a part of the production cycle. Lhoist North America’s Crab Orchard Mine is an underground room and pillar limestone mine that uses mechanically anchored roof bolts for ground support. The mine currently employs two different roof bolting patterns: a standard 1.5 × 1.5 m pattern, and another 0.8 × 0.8 m pattern for use in areas with particularly hazardous roof conditions. The purpose of this study is to evaluate the relative effectiveness of each bolting pattern. A series of numerical models were created using Roc Science’s RS2. The models were based on a symmetrical section of the mine at its deepest point, and were modeled using generalized Hoek-Brown failure criterion along with a discrete fracture network. A series of sensitivity analyses were performed on the models by varying parameters such as joint friction angle, crack persistence, joint randomization, and tensile strength of the limestone. Based on the results of the original models and sensitivity analyses, it appeared that the standard bolting pattern provided sufficient roof support capacity under almost all the expected conditions at the mine, since safety factors below the design value of 1.5 were only found for individual bolts in a few of the worst test cases considered.These results can help improve the mine’s productivity and reduce operating costs without compromising safety.
基金funding support from National Institute for Occupational Safety and Health(NIOSH)(Grant No.200-2016-90154)。
文摘Numerical back analysis is a valuable tool available to rock mechanics researchers and practitioners.Recent studies related to back analysis methods focused primarily on applications of increasingly sophisticated optimization algorithms(primarily machine learning algorithms)to rock mechanics problems.These methods have typically been applied to relatively simple problems;however,more complex back analyses continue to be conducted primarily through ad hoc manual trial-and-error processes.This paper provides a review of the basic concepts and recent developments in the field of numerical back analysis for rock mechanics,as well as some discussion of the relationship between back analysis and more broadly established frameworks for numerical modelling.The challenges of flexible constraints,non-uniqueness,material model limitations,and disparate data sources are considered,and representative case studies are presented to illustrate their impacts on back analyses.The role of back analysis(or“model calibration”)in bonded particle modelling(BPM),bonded block modelling(BBM),and synthetic rock mass(SRM)modelling is also considered,and suggestions are made for further studies on this topic.
文摘The residual strength of rocks and rock masses is an important parameter to be constrained for analysis and design purposes in many rock engineering applications.A residual strength envelope in principal stress space is typically developed using residual strength data obtained from compression tests on many different specimens of the same rock type.In this study,we examined the potential for use of the continuous-failure-state testing concept as a means to constrain the residual strength envelope using a limited number of specimens.Specifically,cylindrical specimens of three rock types(granodiorite,diabase,and Stanstead granite)were unloaded at the residual state such that a full residual strength envelope for each individual specimen was obtained.Using a residual strength model that introduces a single new strength parameter(the residual strength index,or RSI),the results of the continuous-failurestate unloading tests were compared to conventionally obtained residual strength envelopes.Overall,the continuous-failure-state residual strength data were found to be consistent with the conventional residual strength data.However,it was identified that the primary factor limiting an accurate characterization of the residual strength for a given rock type is not the amount of data for a given specimen,but the variety of specimens available to characterize the inherent variability of the rock unit of interest.Accordingly,the use of continuous-failure-state testing for estimation of the residual strength of a rock unit is only recommended when the number of specimens available for testing is very limited(i.e.<5).
基金The research conducted for this study was funded by the National Institute for Occupational Safety and Health(NIOSH)under Grant No.200-2016-90154.
文摘Bonded blockmodel(BBM)has shownpotential in replicating rockmass behavior aswell as the rockesupport interactionmechanism,but their practical application is limited totwo dimensions due to the high associated computational demand.To allow for the use of BBM in simulating three-dimensional(3D)problems,this study proposes an integrated 3D continuumetwo-dimensional(2D)discontinuum approach,in context of rock pillars.A cross-section of a granite pillar was simulated using a BBM with a load path from a calibrated mine-scale FLAC^(3D)model.Pillar support as employed in the mine was also incorporated in different stages during the simulation.Themodel was calibrated by varying the input parameters until the displacements at six locations within the pillarmatchedthosemeasuredby amulti-point borehole extensometer(MPBX)inthe field.The calibratedmodel was subsequently used to understand how the support and load path influenced the damage evolution in the pillar.The shear component of the load pathwas found to have amajor effect on the severity and extent of the damaged regions.When the support density was increased in the model,the lateral displacements along the pillar walls were significantly suppressed in a somewhat unpredictable manner.Thiswas explained by the interaction between the supports and the damaged regions at the corners,which ultimately modified the stresses along the pillar periphery.The amount of displacement reduction obtained by increasing the support density illustrates the potential of BBMto be used as a support design tool.