CCl4 (carbon tetrachloride) and n-C6H14 (n-hexane) sorption studies have been carried out on natural and dealuminated clinoptilolite-type zeolites. External surface area of the materials has been assessed using t...CCl4 (carbon tetrachloride) and n-C6H14 (n-hexane) sorption studies have been carried out on natural and dealuminated clinoptilolite-type zeolites. External surface area of the materials has been assessed using the αs-plots method. The high resolution αs-plots show that the isotherms are divided into four parts corresponding to adsorption in ultramicropores, intersections, supermicropores and external surface area, respectively. The mineralogies of natural zeolites are determined by X-ray analysis. N: low-pressure hysteresis loops, displayed by some substrata, are related to the micropore structure and to the ion-exchange treatment at which the natural precursors were subjected. The adsorption behavior of these substrata was examined in the range of relative pressures between 10^-5-1. Natural samples were used as reference materials to carry out the sorption analyses of the dealuminated samples. The effect of narrow micropore constrictions on the adsorption behavior of clinoptilolites was explored. The occurrence of a low-pressure hysteresis loop on the sorption isotherm of a modified sample is associated to the strong adsorption of the adsorbate molecules at the entrance of the necked-shape micropores, which interfere with the diffusion of the adsorbate molecules inside the porous structure.展开更多
文摘CCl4 (carbon tetrachloride) and n-C6H14 (n-hexane) sorption studies have been carried out on natural and dealuminated clinoptilolite-type zeolites. External surface area of the materials has been assessed using the αs-plots method. The high resolution αs-plots show that the isotherms are divided into four parts corresponding to adsorption in ultramicropores, intersections, supermicropores and external surface area, respectively. The mineralogies of natural zeolites are determined by X-ray analysis. N: low-pressure hysteresis loops, displayed by some substrata, are related to the micropore structure and to the ion-exchange treatment at which the natural precursors were subjected. The adsorption behavior of these substrata was examined in the range of relative pressures between 10^-5-1. Natural samples were used as reference materials to carry out the sorption analyses of the dealuminated samples. The effect of narrow micropore constrictions on the adsorption behavior of clinoptilolites was explored. The occurrence of a low-pressure hysteresis loop on the sorption isotherm of a modified sample is associated to the strong adsorption of the adsorbate molecules at the entrance of the necked-shape micropores, which interfere with the diffusion of the adsorbate molecules inside the porous structure.