The detection and characterization of human veins using infrared (IR) image processing have gained significant attention due to its potential applications in biometric identification, medical diagnostics, and vein-bas...The detection and characterization of human veins using infrared (IR) image processing have gained significant attention due to its potential applications in biometric identification, medical diagnostics, and vein-based authentication systems. This paper presents a low-cost approach for automatic detection and characterization of human veins from IR images. The proposed method uses image processing techniques including segmentation, feature extraction, and, pattern recognition algorithms. Initially, the IR images are preprocessed to enhance vein structures and reduce noise. Subsequently, a CLAHE algorithm is employed to extract vein regions based on their unique IR absorption properties. Features such as vein thickness, orientation, and branching patterns are extracted using mathematical morphology and directional filters. Finally, a classification framework is implemented to categorize veins and distinguish them from surrounding tissues or artifacts. A setup based on Raspberry Pi was used. Experimental results of IR images demonstrate the effectiveness and robustness of the proposed approach in accurately detecting and characterizing human. The developed system shows promising for integration into applications requiring reliable and secure identification based on vein patterns. Our work provides an effective and low-cost solution for nursing staff in low and middle-income countries to perform a safe and accurate venipuncture.展开更多
文摘The detection and characterization of human veins using infrared (IR) image processing have gained significant attention due to its potential applications in biometric identification, medical diagnostics, and vein-based authentication systems. This paper presents a low-cost approach for automatic detection and characterization of human veins from IR images. The proposed method uses image processing techniques including segmentation, feature extraction, and, pattern recognition algorithms. Initially, the IR images are preprocessed to enhance vein structures and reduce noise. Subsequently, a CLAHE algorithm is employed to extract vein regions based on their unique IR absorption properties. Features such as vein thickness, orientation, and branching patterns are extracted using mathematical morphology and directional filters. Finally, a classification framework is implemented to categorize veins and distinguish them from surrounding tissues or artifacts. A setup based on Raspberry Pi was used. Experimental results of IR images demonstrate the effectiveness and robustness of the proposed approach in accurately detecting and characterizing human. The developed system shows promising for integration into applications requiring reliable and secure identification based on vein patterns. Our work provides an effective and low-cost solution for nursing staff in low and middle-income countries to perform a safe and accurate venipuncture.