The Zhuxi deposit is a recently discovered W–Cu deposit located in the Jiangnan porphyry–skarn W belt in South China. The deposit has a resource of 3.44 million tonnes of WO3, making it the largest on Earth,however ...The Zhuxi deposit is a recently discovered W–Cu deposit located in the Jiangnan porphyry–skarn W belt in South China. The deposit has a resource of 3.44 million tonnes of WO3, making it the largest on Earth,however its origin and the evolution of its magmatic–hydrothermal system remain unclear, largely because alteration–mineralization types in this giant deposit have been less well-studied, apart from a study of the calcic skarn orebodies. The different types of mineralization can be classified into magnesian skarn, calcic skarn, and scheelite–quartz–muscovite(SQM) vein types. Field investigations and mineralogical analyses show that the magnesian skarn hosted by dolomitic limestone is characterized by garnet of the grossular–pyralspite(pyrope, almandine, and spessartine) series, diopside, serpentine,and Mg-rich chlorite. The calcic skarn hosted by limestone is characterized by garnet of the grossular–andradite series, hedenbergite, wollastonite, epidote, and Fe-rich chlorite. The SQM veins host highgrade W–Cu mineralization and have overprinted the magnesian and calcic skarn orebodies. Scheelite is intergrown with hydrous silicates in the retrograde skarn, or occurs with quartz, chalcopyrite, sulfide minerals, fluorite, and muscovite in the SQM veins.Fluid inclusion investigations of the gangue and ore minerals revealed the evolution of the ore-forming fluids, which involved:(1) melt and coexisting high–moderate-salinity, high-temperature, high-pressure(>450 ℃and >1.68 kbar), methane-bearing aqueous fluids that were trapped in prograde skarn minerals;(2) moderate–low-salinity, moderate-temperature, moderate-pressure(~210–300 ℃and ~0.64 kbar),methane-rich aqueous fluids that formed the retrograde skarn-type W orebodies;(3) low-salinity,moderate–low-temperature, moderate-pressure(~150–240 ℃and ~0.56 kbar), methane-rich aqueous fluids that formed the quartz–sulfide Cu(–W) orebodies in skarn;(4) moderate–low-salinity,moderate-temperature, low-pressure(~150–250 ℃and ~0.34 kbar) alkanes-dominated aqueous fluids in the SQM vein stage, which led to the formation of high-grade W–Cu orebodies. The S–Pb isotopic compositions of the sulfides suggest that the ore-forming materials were mainly derived from magma generated by crustal anatexis, with minor addition of a mantle component. The H–O isotopic compositions of quartz and scheelite indicate that the ore-forming fluids originated mainly from magmatic water with later addition of meteoric water. The C–O isotopic compositions of calcite indicate that the ore-forming fluid was originally derived from granitic magma, and then mixed with reduced fluid exsolved from local carbonate strata. Depressurization and resultant fluid boiling were key to precipitation of W in the retrograde skarn stage. Mixing of residual fluid with meteoric water led to a decrease in fluid salinity and Cu(–W) mineralization in the quartz–sulfide stage in skarn. The high-grade W–Cu mineralization in the SQM veins formed by multiple mechanisms, including fracturing, and fluid immiscibility, boiling, and mixing.展开更多
The tectonic evolution of SE China block since late Paleozoic remains debated. Here we present a new set of zircon U-Pb geochronological, Lu-Hf isotopic data and whole-rock geochemistry for two stages of basicintermed...The tectonic evolution of SE China block since late Paleozoic remains debated. Here we present a new set of zircon U-Pb geochronological, Lu-Hf isotopic data and whole-rock geochemistry for two stages of basicintermediate dykes from the southwestern Fujian. The samples were collected from the NE-trending (mainly diabases) and NW-trending (mainly diabasic diorites) dykes and yielded zircon U-Pb ages of 315 and 141 Ma, with eHf(t) values of -8.90 to 7.49 and -23.39 to -7.15 (corresponding to TDM2 values of 850 to 1890 Ma and 737 to 2670 Ma), respectively. Geochemically these rocks are characterized by low TiO2 (0.91-1.73 wt.%) and MgO (3.04-7.96 wt.%), and high A1203 (12.5-16.60 wt.%) and K20 (0.60-3.63 wt.%). Further they are enriched in LREEs and LILEs (Rb, Ba, Th and K), but depleted in HFSEs (Nb, Ta and Zr). The tectonic discrimination analysis revealed that the dykes were formed in an intraplate extensional envi- ronment. However, the NW trending dykes show crust-mantle mixed composition, which indicate an extensional tectonic setting with evidence for crustal contamination. The SE China block experienced two main stages of extensional tectonics from late Carboniferous to early Cretaceous. The tectonic evolution of the SE China block from late Devonian to Cretaceous is also evaluated.展开更多
The Halasu area is located in the southeastern margin of the Chinese Altai in Xinjiang, China. It is part of the Altaid orogenic collage where a number of porphyry-type Cue Moe Au deposits have been discovered in rece...The Halasu area is located in the southeastern margin of the Chinese Altai in Xinjiang, China. It is part of the Altaid orogenic collage where a number of porphyry-type Cue Moe Au deposits have been discovered in recent years. Geological mapping and drilling indicate the presence of various mineralized porphyritic intrusions in the Halasu Cue Au deposit, which is currently under exploration. Ue Pb dating of zircon crystals from four different mineralized porphyries reveals three significantly different ages of magmatic intrusion, i.e., ca. 372e382 Ma granodioritic porphyry and porphyritic granite, ca. 266 Ma quartz monzonitic porphyry, and ca. 216 Ma quartz dioritic porphyry. Ree Os dating of molybdenite from veinletdissemination ores in the granodioritic porphyry yields an age of mineralization of ca. 377 Ma, and Ar e Ar dating of K-feldspar from K-feldsparequartzechalcopyrite veins produces ages of ca. 269 and ca.198 Ma. The mineralization(and alteration) ages correspond broadly to the three episodes of magmatic intrusion, suggesting three overprinting porphyry mineralization events that are significantly separated in time. The first episode of porphyry intrusion and mineralization may be related to the magmatic arc being above a plate subduction zone, and the second was formed in a late-collisional environment during the closing of the Junggar Ocean, whereas the third episode of mineralization took place in the postcollisional stage. This case study suggests that in orogens where major porphyry deposits have been found in magmatic arc environments, the potential of discovering late- to post-collisional porphyry deposits cannot be neglected; conversely, in orogens where most porphyry deposits have late- to postcollisional ages, more attention should be paid to porphyries that were formed earlier in magmatic arc environments.展开更多
This paper selected five typical Mesozoic intrusives from the Tongling metallogenic cluster (Xiaotongguanshan, Fenghuangshan, Xinqiao, Dongguashan, and Shatanjiao plutons), and made a systemic SHRIMP zircon U-Pb datin...This paper selected five typical Mesozoic intrusives from the Tongling metallogenic cluster (Xiaotongguanshan, Fenghuangshan, Xinqiao, Dongguashan, and Shatanjiao plutons), and made a systemic SHRIMP zircon U-Pb dating for the five plutons, which produced展开更多
A combined study of magnetic fabrics, zircon U-Pb geochronology and structural deformation was carried out for Late Paleozoic sedimentary and Mesozoic magmatic rocks in the southwestern Fujian rift basin, South China,...A combined study of magnetic fabrics, zircon U-Pb geochronology and structural deformation was carried out for Late Paleozoic sedimentary and Mesozoic magmatic rocks in the southwestern Fujian rift basin, South China, aiming at deciphering the tectonic evolution during Late Mesozoic. Field observations showed that the Late Mesozoic structure deformations in southwestern Fujian were categorized into four phases: NW-SE compression, ENE-WSW extension, NNE-SSW compression and NNW-SSE extension, se- quentially. Zircons picked out from Juzhou granite and WNW-trending diabase dykes showed complete crys- tal shapes and clear oscillatory zonings on their edges, and the U-Pb dating yielded ages of 132 and 141 Ma, respectively. The susceptibility ellipsoid magnitude parameters of the Juzhou granite are characterized by flaser type strain ellipsoid, with pole density center of K3 falling into the first and the third quadrants, these fea- tures revealed that the Juzhou granite formed in ENE-WSW compressional stress field, indicating the early stage of Early Cretaceous extrusion in southwestern Fujian. The late stage of Early Cretaceous NNE-SSW ex- tension was limited by the widespread WNW-trending diabase dykes, which were usually regarded as impor- tant indications for a regional extensional setting. On the basic of the previous researches, structural deforma- tion studies, and the deductions above, it can be concluded that southwestern Fujian experienced five main tectonic stages during Late Mesozoic: Early Jurassic extension, Middie-Late Jurassic thrusting, early stage of Early Cretaceous extension, late stage of Early Cretaceous compression and Late Cretaceous extension.展开更多
基金supported financially by the National Natural Science Foundation of China(No.41772069)the Public Welfare Foundation for Scientific Research in the Ministry of Land and Resources(No.201411035-3)。
文摘The Zhuxi deposit is a recently discovered W–Cu deposit located in the Jiangnan porphyry–skarn W belt in South China. The deposit has a resource of 3.44 million tonnes of WO3, making it the largest on Earth,however its origin and the evolution of its magmatic–hydrothermal system remain unclear, largely because alteration–mineralization types in this giant deposit have been less well-studied, apart from a study of the calcic skarn orebodies. The different types of mineralization can be classified into magnesian skarn, calcic skarn, and scheelite–quartz–muscovite(SQM) vein types. Field investigations and mineralogical analyses show that the magnesian skarn hosted by dolomitic limestone is characterized by garnet of the grossular–pyralspite(pyrope, almandine, and spessartine) series, diopside, serpentine,and Mg-rich chlorite. The calcic skarn hosted by limestone is characterized by garnet of the grossular–andradite series, hedenbergite, wollastonite, epidote, and Fe-rich chlorite. The SQM veins host highgrade W–Cu mineralization and have overprinted the magnesian and calcic skarn orebodies. Scheelite is intergrown with hydrous silicates in the retrograde skarn, or occurs with quartz, chalcopyrite, sulfide minerals, fluorite, and muscovite in the SQM veins.Fluid inclusion investigations of the gangue and ore minerals revealed the evolution of the ore-forming fluids, which involved:(1) melt and coexisting high–moderate-salinity, high-temperature, high-pressure(>450 ℃and >1.68 kbar), methane-bearing aqueous fluids that were trapped in prograde skarn minerals;(2) moderate–low-salinity, moderate-temperature, moderate-pressure(~210–300 ℃and ~0.64 kbar),methane-rich aqueous fluids that formed the retrograde skarn-type W orebodies;(3) low-salinity,moderate–low-temperature, moderate-pressure(~150–240 ℃and ~0.56 kbar), methane-rich aqueous fluids that formed the quartz–sulfide Cu(–W) orebodies in skarn;(4) moderate–low-salinity,moderate-temperature, low-pressure(~150–250 ℃and ~0.34 kbar) alkanes-dominated aqueous fluids in the SQM vein stage, which led to the formation of high-grade W–Cu orebodies. The S–Pb isotopic compositions of the sulfides suggest that the ore-forming materials were mainly derived from magma generated by crustal anatexis, with minor addition of a mantle component. The H–O isotopic compositions of quartz and scheelite indicate that the ore-forming fluids originated mainly from magmatic water with later addition of meteoric water. The C–O isotopic compositions of calcite indicate that the ore-forming fluid was originally derived from granitic magma, and then mixed with reduced fluid exsolved from local carbonate strata. Depressurization and resultant fluid boiling were key to precipitation of W in the retrograde skarn stage. Mixing of residual fluid with meteoric water led to a decrease in fluid salinity and Cu(–W) mineralization in the quartz–sulfide stage in skarn. The high-grade W–Cu mineralization in the SQM veins formed by multiple mechanisms, including fracturing, and fluid immiscibility, boiling, and mixing.
基金supported by projects from the China Geological Survey(Grant Nos.12120113089600,12120114028701 and 1212011085472)
文摘The tectonic evolution of SE China block since late Paleozoic remains debated. Here we present a new set of zircon U-Pb geochronological, Lu-Hf isotopic data and whole-rock geochemistry for two stages of basicintermediate dykes from the southwestern Fujian. The samples were collected from the NE-trending (mainly diabases) and NW-trending (mainly diabasic diorites) dykes and yielded zircon U-Pb ages of 315 and 141 Ma, with eHf(t) values of -8.90 to 7.49 and -23.39 to -7.15 (corresponding to TDM2 values of 850 to 1890 Ma and 737 to 2670 Ma), respectively. Geochemically these rocks are characterized by low TiO2 (0.91-1.73 wt.%) and MgO (3.04-7.96 wt.%), and high A1203 (12.5-16.60 wt.%) and K20 (0.60-3.63 wt.%). Further they are enriched in LREEs and LILEs (Rb, Ba, Th and K), but depleted in HFSEs (Nb, Ta and Zr). The tectonic discrimination analysis revealed that the dykes were formed in an intraplate extensional envi- ronment. However, the NW trending dykes show crust-mantle mixed composition, which indicate an extensional tectonic setting with evidence for crustal contamination. The SE China block experienced two main stages of extensional tectonics from late Carboniferous to early Cretaceous. The tectonic evolution of the SE China block from late Devonian to Cretaceous is also evaluated.
基金funded by the Natural Science Foundation of China (No. U1303292)the Science and Technology Support Program of China (No. 2011BAB06B02)the China Geology Survey Program (No. 121211220926)
文摘The Halasu area is located in the southeastern margin of the Chinese Altai in Xinjiang, China. It is part of the Altaid orogenic collage where a number of porphyry-type Cue Moe Au deposits have been discovered in recent years. Geological mapping and drilling indicate the presence of various mineralized porphyritic intrusions in the Halasu Cue Au deposit, which is currently under exploration. Ue Pb dating of zircon crystals from four different mineralized porphyries reveals three significantly different ages of magmatic intrusion, i.e., ca. 372e382 Ma granodioritic porphyry and porphyritic granite, ca. 266 Ma quartz monzonitic porphyry, and ca. 216 Ma quartz dioritic porphyry. Ree Os dating of molybdenite from veinletdissemination ores in the granodioritic porphyry yields an age of mineralization of ca. 377 Ma, and Ar e Ar dating of K-feldspar from K-feldsparequartzechalcopyrite veins produces ages of ca. 269 and ca.198 Ma. The mineralization(and alteration) ages correspond broadly to the three episodes of magmatic intrusion, suggesting three overprinting porphyry mineralization events that are significantly separated in time. The first episode of porphyry intrusion and mineralization may be related to the magmatic arc being above a plate subduction zone, and the second was formed in a late-collisional environment during the closing of the Junggar Ocean, whereas the third episode of mineralization took place in the postcollisional stage. This case study suggests that in orogens where major porphyry deposits have been found in magmatic arc environments, the potential of discovering late- to post-collisional porphyry deposits cannot be neglected; conversely, in orogens where most porphyry deposits have late- to postcollisional ages, more attention should be paid to porphyries that were formed earlier in magmatic arc environments.
基金the National Natural Science Foundation of China (Grant No. 40434011)the Major State Basic Research Program (Grant No. 1999CB043206)the National Natural Science Foundation of China (Grant No. 40372050)
文摘This paper selected five typical Mesozoic intrusives from the Tongling metallogenic cluster (Xiaotongguanshan, Fenghuangshan, Xinqiao, Dongguashan, and Shatanjiao plutons), and made a systemic SHRIMP zircon U-Pb dating for the five plutons, which produced
基金supported by the projects the China Geological Survey(Nos.12120113089600,12120114028701 and 1212011085472)the Key Project of Natural Science Foundation of China(No.41530321)the Fundamental Research Funds for the Central University(No.2652017259)
文摘A combined study of magnetic fabrics, zircon U-Pb geochronology and structural deformation was carried out for Late Paleozoic sedimentary and Mesozoic magmatic rocks in the southwestern Fujian rift basin, South China, aiming at deciphering the tectonic evolution during Late Mesozoic. Field observations showed that the Late Mesozoic structure deformations in southwestern Fujian were categorized into four phases: NW-SE compression, ENE-WSW extension, NNE-SSW compression and NNW-SSE extension, se- quentially. Zircons picked out from Juzhou granite and WNW-trending diabase dykes showed complete crys- tal shapes and clear oscillatory zonings on their edges, and the U-Pb dating yielded ages of 132 and 141 Ma, respectively. The susceptibility ellipsoid magnitude parameters of the Juzhou granite are characterized by flaser type strain ellipsoid, with pole density center of K3 falling into the first and the third quadrants, these fea- tures revealed that the Juzhou granite formed in ENE-WSW compressional stress field, indicating the early stage of Early Cretaceous extrusion in southwestern Fujian. The late stage of Early Cretaceous NNE-SSW ex- tension was limited by the widespread WNW-trending diabase dykes, which were usually regarded as impor- tant indications for a regional extensional setting. On the basic of the previous researches, structural deforma- tion studies, and the deductions above, it can be concluded that southwestern Fujian experienced five main tectonic stages during Late Mesozoic: Early Jurassic extension, Middie-Late Jurassic thrusting, early stage of Early Cretaceous extension, late stage of Early Cretaceous compression and Late Cretaceous extension.