期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Characterization of Bacillus subtilis Ab03 for efficient ammonia nitrogen removal 被引量:1
1
作者 Qiang Wang Weilai Fu +4 位作者 Ruiqi Lu Chunli Pan ganfeng yi Xian Zhang Zhiming Rao 《Systems Microbiology and Biomanufacturing》 2022年第3期580-588,共9页
An efficient ammonia nitrogen degrading bacterial strain was isolated from a fish and shrimp pond and identified as Bacillus subtilis(Ab03).Firstly,the strain was continuously domesticated in ammonium solution to impr... An efficient ammonia nitrogen degrading bacterial strain was isolated from a fish and shrimp pond and identified as Bacillus subtilis(Ab03).Firstly,the strain was continuously domesticated in ammonium solution to improve its nitrogen removal capacity.The performance of the strain in terms of nitrogen removal efficiency under different culture conditions was then examined.Finally,the nitrogen removal process and related strain mechanisms were analyzed by nitrogen balance.The results showed the strain Ab03 could remove 91.67% of NH_(4)^(+)-N at 300 mg/L under the conditions of glucose as the single carbon source,C/N of 15,pH of 7.5,the temperature of 35℃ and dissolved oxygen of 7-8 mg/L.It was also found that under conditions where ammonia nitrogen was the only nitrogen source,strain Ab03 could also undergo aerobic denitrification for simultaneous conversion,with a final gas conversion rate of 74.81%. 展开更多
关键词 Bacillus subtilis Ammonia nitrogen Nitrogen balance Simultaneous conversion
原文传递
Comparative transcriptome analysis reveals metabolic regulation of prodigiosin in Serratia marcescens
2
作者 Yang Sun Lijun Wang +5 位作者 Tolbert Osire Weilai Fu ganfeng yi Shang-Tian Yang Taowei Yang Zhiming Rao 《Systems Microbiology and Biomanufacturing》 2021年第3期323-335,共13页
Prodigiosin is a secondary metabolite mainly produced at 30°C in Serratia marcescens,but it can hardly be synthetized at 37°C or higher.In this study,we provide insight into the metabolic regulation of prodi... Prodigiosin is a secondary metabolite mainly produced at 30°C in Serratia marcescens,but it can hardly be synthetized at 37°C or higher.In this study,we provide insight into the metabolic regulation of prodigiosin synthesis in response to temperature through transcriptome sequencing.The analysis of the function of differentially expressed genes suggested that temperature resulted in significant alteration of the metabolic pathways between 30 and 37°C.Specifically,30°C favored transcriptional expression of the pig gene cluster.At the same time,the carbon flux was redistributed to pathways of pyruvate,proline,serine,especially homoserine,cystathionine,homocysteine,methionine,and s-adenosylmethionine metabolism,all involved in prodigiosin biosynthesis,and was finally increased towards the prodigiosin synthesis pathway in S.marcescens at 30°C.Interestingly,results further confirmed increased transcriptional level of five regulators(LuxS,RpoS,Hfq,EepR,CRP),and decreased content of hexS through qPCR.Finally,successful co-overexpression of mmuM and metK,related to homocysteine,methionine,and s-adenosylmethionine metabolism,in the chromosome of JNB5-1(JNB5-1/MK)resulted in increased prodigiosin titer up to 7.57 g/L in JNB5-1/MK at 30°C,which was 41.2%higher than that in JNB5-1.Our transcriptome analysis provides further insight into the strain’s response to temperature changes at the transcription level,which is of great significance for improving the production of prodigiosin. 展开更多
关键词 S.marcescens PRODIGIOSIN TRANSCRIPTOME TEMPERATURE-DEPENDENT Metabolic regulation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部