Electrochemical sensing provides a powerful technological means for the therapeutic drug monitoring of drug-resistant tuberculosis but requires a functionalized electrode to capture the analytes and catalyze their red...Electrochemical sensing provides a powerful technological means for the therapeutic drug monitoring of drug-resistant tuberculosis but requires a functionalized electrode to capture the analytes and catalyze their redox reactions.Herein,we construct a nickel-tannic acid supramolecular network(Ni-TA)on the surface of electrospun-derived C-CeO_(2) nanofiber for the sensitive and simultaneous detection of isoniazid(INZ)and hydrazine(HYD).Mechanistic investigations demonstrate that Ni-TA is electronegative and hydrophilic,thus facilitating an efficient mass and electron transfer.Ni-TA/C-CeO_(2) has higher adsorption rate constants(0.091 g mg^(-1)h^(-1)for INZ,and 0.062 g mg^(-1)h^(-1)for HYD)than native C-CeO_(2)(0.075 g mg^(-1)h^(-1)for INZ,and 0.047 g mg^(-1)h^(-1)for HYD).Moreover,Ni-TA/C-CeO_(2)(56Ω)has lower charge transfer resistances than C-CeO_(2)(417Ω).Ni-TA/C-CeO_(2) performs low detection limits and wide linearity ranges for INZ(0.012μmol/L and 0.1-400μmol/L,respectively)and HYD(0.008μmol/L and 0.015-1420μmol/L,respectively),coupled with high selectivity,cycle stability and reproducibility.This research demonstrated the promising applications of Ni-TA/C-CeO_(2) by analyzing human-collected plasma and urine samples.展开更多
基金supported by Cooperative Education Program of the Ministry of Education,China(Nos.202101256027 and 202102070134)National Excellent Young Scientists Found(No.00308054A1045)+3 种基金National Key R&D Program of China(No.2022YFA0912800)National Natural Science Foundation of China(No.22178233)Talents Program of Sichuan Province,Double First Class University Plan of Sichuan University,State Key Laboratory of Polymer Materials Engineering(No.sklpme 2020-03-01)Sichuan Tianfu Emei Project(No.2022-EC02-00073-CG)。
文摘Electrochemical sensing provides a powerful technological means for the therapeutic drug monitoring of drug-resistant tuberculosis but requires a functionalized electrode to capture the analytes and catalyze their redox reactions.Herein,we construct a nickel-tannic acid supramolecular network(Ni-TA)on the surface of electrospun-derived C-CeO_(2) nanofiber for the sensitive and simultaneous detection of isoniazid(INZ)and hydrazine(HYD).Mechanistic investigations demonstrate that Ni-TA is electronegative and hydrophilic,thus facilitating an efficient mass and electron transfer.Ni-TA/C-CeO_(2) has higher adsorption rate constants(0.091 g mg^(-1)h^(-1)for INZ,and 0.062 g mg^(-1)h^(-1)for HYD)than native C-CeO_(2)(0.075 g mg^(-1)h^(-1)for INZ,and 0.047 g mg^(-1)h^(-1)for HYD).Moreover,Ni-TA/C-CeO_(2)(56Ω)has lower charge transfer resistances than C-CeO_(2)(417Ω).Ni-TA/C-CeO_(2) performs low detection limits and wide linearity ranges for INZ(0.012μmol/L and 0.1-400μmol/L,respectively)and HYD(0.008μmol/L and 0.015-1420μmol/L,respectively),coupled with high selectivity,cycle stability and reproducibility.This research demonstrated the promising applications of Ni-TA/C-CeO_(2) by analyzing human-collected plasma and urine samples.