Long-term use in challenging natural conditions is possible for photovoltaic modules,which are extremely prone to failure.Failure to diagnose and address faults in Photovoltaic(PV)power systems in a timely manner can ...Long-term use in challenging natural conditions is possible for photovoltaic modules,which are extremely prone to failure.Failure to diagnose and address faults in Photovoltaic(PV)power systems in a timely manner can cause permanent damage to PV modules and,in more serious cases,fires.Therefore,research into photovoltaic module defect detection techniques is crucial for the growth of the photovoltaic sector as well as for maintaining national economic prosperity and ensuring public safety.Considering the drawbacks of the current real-time and historical data-based methods for monitoring distributed PV systems,this paper proposes a method for monitoring PV systems at the module or string level that can be achieved by monitoring only electrical signals.The approach doesn’t need a lot of tests to get the operational data of PV modules beforehand and only requires theoretical feature libraries of PV modules through panel parameter calculations.The present operating conditions and the open-circuit and short-circuit faults can be precisely identified by comparing the observed open-circuit voltage and short-circuit current with the corresponding data in the theoretical feature library.After that,by comparing the measured maximum power point voltage and current with the corresponding data in the theoretical feature library through the threshold method,aging and shadowing faults can be accurately determined.Experimental testing was done to see whether the suggested method was effective.The results show that the proposed technique is able to diagnose open-circuit faults,short-circuit faults,aging faults,and shadowing faults with shadow occlusion above 20%.展开更多
Structured illumination microscopy(SIM)is a promising super-resolution technique for imaging subcellular structures and dynamics due to its compatibility with most commonly usedffuorescent labeling methods.Structured ...Structured illumination microscopy(SIM)is a promising super-resolution technique for imaging subcellular structures and dynamics due to its compatibility with most commonly usedffuorescent labeling methods.Structured illumination can be obtained by either laser interference or projection of fringe patterns.Here,we proposed a fringe projector composed of a compact multiwavelength LEDs module and a digital micromirror device(DMD)which can be directly attached to most commercial invertedffuorescent microscopes and update it into a SIM system.The effects of the period and duty cycle of fringe patterns on the modulation depth of the structured lightfield were studied.With the optimized fringe pattern,1:6×resolution improvement could be obtained with high-end oil objectives.Multicolor imaging and dynamics of subcellular organelles in live cells were also demonstrated.Our method provides a low-cost solution for SIM setup to expand its wide range of applications to most research labs in thefield of life science and medicine.展开更多
Nitrate is considered to be one of the most widely present pollutants leading to eutrophication of environment. The purpose of this work was to isolate and identify new anaerobic denitrifying bacteria from reservoir s...Nitrate is considered to be one of the most widely present pollutants leading to eutrophication of environment. The purpose of this work was to isolate and identify new anaerobic denitrifying bacteria from reservoir sediments and utilize different electron donors for isolates to improve nitrate removal efficiency. Using traditional enrichment approach,one purified anaerobic bacterium( Y12) capable of NO-3-N removal from sediments was obtained. The species identity of Y12 was determined via 16 S rRNA gene sequence analysis to be Acinetobacter. In this work,the fastest denitrification rates were observed with ferrous iron as electron donor.And,slightly slower rates were observed with hydrogen and sodium sulfide as electron donors. However,when used hydrogen gas, ferrous iron and sodium sulfide as electron donors, C / N ratios had little effect on autotrophic denitrification rate at the initial C / N ratio from 1.5 to 9.0. Meanwhile,when made use of hydrogen gas,ferrous iron and sodium sulfide as electron donors,a maximum nitrate removal ratio of 100.00%,91.43%and 87.99% at the temperature of 30 ℃,respectively. Moreover,maximum denitrification activity was observed at p H 6.0-7.0.展开更多
A pilot-scale filtration system was adopted to prepare filter media with catalytic activity to remove manganese(Mn^(2+))and ammonium(NH_(4)^(+)-N).Three different combinations of oxidants(KMnO_(4)and K_(2)FeO_(4))and ...A pilot-scale filtration system was adopted to prepare filter media with catalytic activity to remove manganese(Mn^(2+))and ammonium(NH_(4)^(+)-N).Three different combinations of oxidants(KMnO_(4)and K_(2)FeO_(4))and reductants(MnSO_(4)and FeCl_(2))were used during the start-up period.Filter R3 started up by KMnO_(4)and FeCl_(2)(Mn^(7+)→MnO_(x))exhibited excellent catalytic property,and the NH_(4)^(+)-N and Mn^(2+)removal efficiency reached over 80%on the 10th and 35th days,respectively.Filter R1 started up by K_(2)FeO_(4)and MnSO_(4)(MnO_(x)←Mn^(2+))exhibited the worst catalytic property.Filter R2 started up by KMnO_(4)and MnSO_(4)(Mn^(7+)→MnO_(x)←Mn^(2+))were in between.According to Zeta potential results,the Mn-based oxides(MnO_(x))formed by Mn^(7+)→MnO_(x)performed the highest pHIEP and pHPZC.The higher the pHIEP and pHPZC,the more unfavorable the cation adsorption.However,it was inconsistent with its excellent Mn^(2+)and NH_(4)^(+)-N removal abilities,implying that catalytic oxidation played a key role.Combined with XRD and XPS analysis,the results showed that the MnO_(x)produced by the reduction of KMnO_(4)showed early formation of buserite crystals,high degree of amorphous,high content of Mn3+and lattice oxygen with the higher activity to form defects.The above results showed that MnO_(x)produced by the reduction of KMnO_(4)was more conducive to the formation of active species for catalytic oxidation of NH_(4)^(+)-N and Mn^(2+)removal.This study provides new insights on the formation mechanisms of the active MnO_(x)that could catalytic oxidation of NH_(4)^(+)-N and Mn^(2+).展开更多
Stormwater reuse is one of the most important ways to mitigate water resource shortage.However,urban stormwater contains many bacteria species,which threaten the reuse safety.Therefore,stormwater disinfection is highl...Stormwater reuse is one of the most important ways to mitigate water resource shortage.However,urban stormwater contains many bacteria species,which threaten the reuse safety.Therefore,stormwater disinfection is highly needed.Although disinfection has been widely conducted in the drinking water and reclaimed water,it is rarely carried out for stormwater.This study collected the roof stormwater and undertook chlorination disinfection.Two typical bacteria,Escherichia coli(E.coli)and Staphylococcus aureus(S.aureus)were selected in this study to investigate the disinfection efficiency.It is found that bacteria species present in the stormwater had an important influence on disinfection efficiency while the original stormwater quality did not show an obvious affect.However,when the disinfected stormwater was stored,the stormwater quality was highly variable during its storage process and the variability was affected by bacteria species.The S.aureus containing stormwater showed a high variability of quality and S.aureus significantly regrew.However,the E.coli containing stormwater quality had a relatively low variability and E.coli did not significantly regrew.Additionally,it is noted that after storage,the dissolved form of stormwater was more positive to the freshwater algae’s growth while the particulate form(including bacteria and other particulate matters)was less.This implies that a further treatment such as filtration is needed before the stored stormwater is recharged into receiving waters in order to remove particulate forms.These research outcomes can provide useful insight to effective stormwater disinfection and ensure reuse safety.展开更多
Manganese and ammonium pollution in surface water sources has become a serious issue.In this study, a pilot-scale filtration system was used to investigate the effect of ammonium on manganese removal during the simult...Manganese and ammonium pollution in surface water sources has become a serious issue.In this study, a pilot-scale filtration system was used to investigate the effect of ammonium on manganese removal during the simultaneous removal of ammonium and manganese from surface water using a manganese co-oxide filter film(MeO_x ). The results showed that the manganese removal efficiency of MeO_x in the absence of ammonium was high and stable, and the removal efficiency could reach 70% even at 5.5 °C. When the influent ammonium concentration was lower than 0.7 mg/L, ammonium and manganese could be removed simultaneously. However, at an ammonium concentration of 1.5 mg/L, the manganese removal efficiency of the filter gradually decreased with time(from 96% to 46.20%). Nevertheless, there was no impact of manganese on ammonium removal. The mechanism by which ammonium negatively affected manganese removal was investigated, demonstrating that ammonium affected manganese removal mainly through two possible mechanisms. On one hand, the decreased p H caused by ammonium oxidation was unfavorable for the oxidation of manganese by MeO_x ; on the other hand, the presence of ammonium slowed the growth of new MeO_x and retarded the increase in the specific surface area of the Me Ox-coated sand, and induced changes in the morphology and crystal structure of Me Ox. Consequently, the manganese removal efficiency of the filter decreased when ammonium was present in the inlet water.展开更多
Structured illumination microscopy(SIM)has become a widely used tool for insight into biomedical challenges due to its rapid,long-term,and super-resolution(SR)imaging.However,artifacts that often appear in SIM images ...Structured illumination microscopy(SIM)has become a widely used tool for insight into biomedical challenges due to its rapid,long-term,and super-resolution(SR)imaging.However,artifacts that often appear in SIM images have long brought into question its fidelity,and might cause misinterpretation of biological structures.We present HiFi-SIM,a high-fidelity SIM reconstruction algorithm,by engineering the effective point spread function(PSF)into an ideal form.HiFi-SIM can effectively reduce commonly seen artifacts without loss of fine structures and improve the axial sectioning for samples with strong background.In particular,HiFi-SIM is not sensitive to the commonly used PSF and reconstruction parameters;hence,it lowers the requirements for dedicated PSF calibration and complicated parameter adjustment,thus promoting SIM as a daily imaging tool.展开更多
Sodium hypochlorite(NaClO)is a commonly applied cleaning agent for ultrafiltration membranes in water and wastewater treatment.Long-term exposure to NaClO might change the properties and performance of polymeric membr...Sodium hypochlorite(NaClO)is a commonly applied cleaning agent for ultrafiltration membranes in water and wastewater treatment.Long-term exposure to NaClO might change the properties and performance of polymeric membranes,and ultimately shorten membrane lifespan.Active species in NaClO solution vary with solution pH,and the aging effects can change depending on the membrane material.In this study,the aging of polyvinylidene fluoride(PVDF)and polyethersulfone(PES)membranes by NaClO at pH 3–11 was investigated by examining variations in chemical composition,surface charge,surface morphology,mechanical strength,permeability,and retention ability.Polyvinyl pyrrolidone(PVP),which was blended in both membranes,was oxidized and dislodged due to NaClO aging at all investigated pH values,but the oxidation products and dislodgement ratio of PVP varied with solution pH.For the PVDF membrane,NaClO aging at pH 3–11 caused a moderate increase in permeability and decreased retention due to the oxidation and release of PVP.The tensile strength decreased only at pH 11 because of the defluorination of PVDF molecules.For the PES membrane,NaClO aging at all investigated pH resulted in chain scission of PES molecules,which was favored at pH 7 and 9,potentially due to the formation of free radicals.Therefore,a decrease in tensile strength and retention ability,as well as an increase in permeability,occurred in the PES membrane for NaClO aging at pH 3–11.Overall,the results can provide a basis for selecting chemical cleaning conditions for PVDF and PES membranes.展开更多
Permanganate was used as an oxidant to control estrone in the present study. Kinetics was determined at pH 2.5-9.4 and temperature 15–40°C for the reaction of estrone with potassium permanganate. It was found th...Permanganate was used as an oxidant to control estrone in the present study. Kinetics was determined at pH 2.5-9.4 and temperature 15–40°C for the reaction of estrone with potassium permanganate. It was found that the reaction is second-order overall and first-order with respect to both estrone and permanganate. The second-order rate constant for the reaction at pH 5.8 and 25°C is 44.45 L mol-1 s-1. The reaction rate first decreased with the increase of pH in the range of 2.5-6.6 and then increased greatly with the increase of pH in the range of 6.6-9.4. In addition, the rate constant exponentially increased with the increase of reaction temperature. Removal of estrogenicity was also investigated during the degradation of estrone using yeast estrogen screen (YES). Results show that the estrogenicity increased in the initial 15 min of reaction and then decreased fast, with a removal rate of 73.8% within the 30 min of reaction. Results also demonstrate that the reaction rate between estrone and permanganate is faster in natural water background than in the ultra-pure water system. Permanganate oxidation is therefore a feasible option for removal of estrone in drinking water treatment processes. However, the contact time must be enough in order to remove estrone without causing the increase of estrogenicity.展开更多
Na-rich birnessite(NRB) was synthesized by a simple synthesis method and used as a high-efficiency adsorbent for the removal of ammonium ion(NH+4) from aqueous solution.In order to demonstrate the adsorption perf...Na-rich birnessite(NRB) was synthesized by a simple synthesis method and used as a high-efficiency adsorbent for the removal of ammonium ion(NH+4) from aqueous solution.In order to demonstrate the adsorption performance of the synthesized material,the effects of contact time,pH,initial ammonium ion concentration,and temperature were investigated.Adsorption kinetics showed that the adsorption behavior followed the pseudo second-order kinetic model.The equilibrium adsorption data were fitted to Langmuir and Freundlich adsorption models and the model parameters were evaluated.The monolayer adsorption capacity of the adsorbent,as obtained from the Langmuir isotherm,was 22.61 mg NH+4-N/g at283 K.Thermodynamic analyses showed that the adsorption was spontaneous and that it was also a physisorption process.Our data revealed that the higher NH+4adsorption capacity could be primarily attributed to the water absorption process and electrostatic interaction.Particularly,the high surface hydroxyl-content of NRB enables strong interactions with ammonium ion.The results obtained in this study illustrate that the NRB is expected to be an effective and economically viable adsorbent for ammonium ion removal from aqueous system.展开更多
The unstable interfaces between a SnO_(2)anode and an electrolyte in a Li-ion battery dramatically impair the reversibility and cycling stability of lithiation and delithiation,resulting in low roundtrip Coulombic eff...The unstable interfaces between a SnO_(2)anode and an electrolyte in a Li-ion battery dramatically impair the reversibility and cycling stability of lithiation and delithiation,resulting in low roundtrip Coulombic efficiency(CE)and fast capacity decay of SnO_(2)-based anode materials.Herein,a simple strategy of modifying the solid electrolyte interphase(SEI)is developed to enhance the interfacial stability and lithium storage reversibility of SnO_(2)by compositing it with graphite(G)and an inorganic component of the SEI,such as Li_(2)CO_(3)or LiF,which results in the SnO_(2)-Li_(2)CO_(3)/G and SnO_(2)-LiF/G composite anodes with high CEs,large capacities and long cycle lives.Specifically,the SnO_(2)-Li_(2)CO_(3)/G composite anode exhibits an average initial CE of 79.6%,a stable reversible capacity of 927.5 mA hg^(-1)at a current rate of 0.2 A g^(-1),and a charge capacity over 1200 mA hg^(-1)with a CE>99%after 900 cycles at a higher current rate of 1 A g^(-1).It is revealed that Li_(2)CO_(3)induces the formation of a dense and stable SEI on SnO_(2)grains and inhibits the coarsening of nanosized Sn particles generated from the dealloying reaction in the SnO_(2)-Li_(2)CO_(3)/G electrode.Moreover,the CE and cycling stability of other alloying-type(Si)and conversion reaction(MnO_(2)and Fe_(3)O_(4))anodes can also be greatly promoted by simply milling with Li_(2)CO_(3).Thus,a universal and simple strategy is developed to achieve highly reversible and stable electrodes for large-capacity lithium storage.展开更多
To solve the problem of shortened backwashing intervals in groundwater plants, several disinfectants including ozone(O3), hydrogen peroxide(H2O2) and chlorine dioxide(Cl O2)were examined to peel off the film fro...To solve the problem of shortened backwashing intervals in groundwater plants, several disinfectants including ozone(O3), hydrogen peroxide(H2O2) and chlorine dioxide(Cl O2)were examined to peel off the film from the quartz sand surface in four pilot-scale columns.An optimized oxidant dosage and oxidation time were determined by batch tests.Subsequently, the optimized conditions were tested in the four pilot-scale columns. The results demonstrated that the backwashing intervals increased from 35.17 to 54.33(H2O2)and to 53.67 hr(ClO2) after the oxidation treatments, and the increase of backwashing interval after treatment by O3 was much less than for the other two treatments.Interestingly, the treatment efficiency of filters was not affected by O3 or H2O2 oxidation;but after oxidation by ClO2, the treatment efficiency was deteriorated, especially the ammonia removal(from 96.96% to 24.95%). The filter sands before and after the oxidation were characterized by scanning electron microscopy and X-ray photoelectron spectroscopy.Compared with the oxidation by O3 and H2O2, the structures on the surface of filter sands were seriously damaged after oxidation by ClO2. The chemical states of manganese on the surfaces of those treated sands were only changed by ClO2. The damage of the structures and the change of the chemical states of manganese might have a negative effect on the ammonia removal. In summary, H2O2 is a suitable agent for film peeling.展开更多
Filamentous fungi can enter drinking water supply systems in various ways,and exist in suspended or sessile states which threatens the health of individuals by posing a high risk of invasive infections.In this study,t...Filamentous fungi can enter drinking water supply systems in various ways,and exist in suspended or sessile states which threatens the health of individuals by posing a high risk of invasive infections.In this study,the biofilms formation kinetics of the three genera of fungal spores,Aspergillus niger(A.niger),Penicillium polonicum(P.polonicum)and Trichoderma harzianum(T.harzianum)isolated fromthe groundwater were reported,as well as the effects of water quality parameters were evaluated.In addition,the efficiency of low-concentrations of chlorine-based disinfectants(chlorine,chlorine dioxide and chloramine)on controlling the formation of fungal biofilms was assessed.The results showed that the biofilms formation of the three genera of fungi could be divided into the following four phases:induction,exponential,stationary and sloughing off.The optimum conditions for fungal biofilms formation were found to be neutral or weakly acidic at 28°C with rich nutrition.In fact,A.niger,P.polonicum,and T.harzianum were not observed to form mature biofilms in actual groundwater within 120 hr.Carbon was found to have the maximum effect on the fungal biofilms formation in actual groundwater,followed by nitrogen and phosphorus.The resistance of fungal species to disinfectants during the formation of biofilms decreased in the order:A.niger>T.harzianum>P.polonicum.Chlorine dioxide was observed to control the biofilms formation with maximum efficiency,followed by chlorine and chloramine.Consequently,the results of this study will provide a beneficial understanding for the formation and control of fungal biofilms.展开更多
Ultraviolet(UV)/monochloramine(NHCl) as an advanced oxidation process was firstly applied for Aspergillus spores inactivation. This study aims to: i) clarify the inactivation and photoreactivation characteristics of U...Ultraviolet(UV)/monochloramine(NHCl) as an advanced oxidation process was firstly applied for Aspergillus spores inactivation. This study aims to: i) clarify the inactivation and photoreactivation characteristics of UV/NHCl process, ii) compared with UV/Clin inactivation efficiency, photoreactivation and energy consumption. The results illustrated that UV/NHCl showed better inactivation efficiency than that of UV alone and UV/Cl, and could effectively control the photoreactivation. For instance, the inactivation rates for Aspergillus flavus, Aspergillus niger and Aspergillus fumigatus in the processes of UV/NHCl(2.0 mg/L) was 0.034, 0.030 and 0.061 cm^(2)/m J), respectively, which were higher than that of UV alone(0.027, 0.026 and 0.024 cm^(2)/m J) and UV/Cl(0.023, 0.026 and 0.031 cm^(2)/m J). However, there was no synergistic effect for Aspergillus flavus and Aspergillus fumigatus. As for Aspergillus niger, the best synergistic effect can reach 1.86-log 10. This may be due to their different resistance to disinfectants, which were related to the size, an outer layer of rodlets(hydrophobins) and pigments. After UV/NHCl inactivation, the degree of cell membrane damage and intracellular reactive oxygen species were higher than that of UV alone. UV/NHCl had the advantages of high inactivation efficiency and inhibition of photoreactivation, which provides a new entry point for the disinfection of waterborne fungi.展开更多
基金supported by CHNG Science and Technology Project(HNKJ20-H54 Design and Manufacture of Adaptive,Customized,Localised Autonomous Controllable Wind Turbines,and Remote Sea Power Transmission Technology).
文摘Long-term use in challenging natural conditions is possible for photovoltaic modules,which are extremely prone to failure.Failure to diagnose and address faults in Photovoltaic(PV)power systems in a timely manner can cause permanent damage to PV modules and,in more serious cases,fires.Therefore,research into photovoltaic module defect detection techniques is crucial for the growth of the photovoltaic sector as well as for maintaining national economic prosperity and ensuring public safety.Considering the drawbacks of the current real-time and historical data-based methods for monitoring distributed PV systems,this paper proposes a method for monitoring PV systems at the module or string level that can be achieved by monitoring only electrical signals.The approach doesn’t need a lot of tests to get the operational data of PV modules beforehand and only requires theoretical feature libraries of PV modules through panel parameter calculations.The present operating conditions and the open-circuit and short-circuit faults can be precisely identified by comparing the observed open-circuit voltage and short-circuit current with the corresponding data in the theoretical feature library.After that,by comparing the measured maximum power point voltage and current with the corresponding data in the theoretical feature library through the threshold method,aging and shadowing faults can be accurately determined.Experimental testing was done to see whether the suggested method was effective.The results show that the proposed technique is able to diagnose open-circuit faults,short-circuit faults,aging faults,and shadowing faults with shadow occlusion above 20%.
基金The study was funded by the National Key Technologies R&D Program of China(2018YFC0114800 and 2017YFC0109900)the Natural Science Foundation of China(NSFC)(61405238)+1 种基金the Natural Science Foundation of Jiangsu Province(BK20141206)the Key Technologies R&D Program of Jiangsu Province(BE2018666).
文摘Structured illumination microscopy(SIM)is a promising super-resolution technique for imaging subcellular structures and dynamics due to its compatibility with most commonly usedffuorescent labeling methods.Structured illumination can be obtained by either laser interference or projection of fringe patterns.Here,we proposed a fringe projector composed of a compact multiwavelength LEDs module and a digital micromirror device(DMD)which can be directly attached to most commercial invertedffuorescent microscopes and update it into a SIM system.The effects of the period and duty cycle of fringe patterns on the modulation depth of the structured lightfield were studied.With the optimized fringe pattern,1:6×resolution improvement could be obtained with high-end oil objectives.Multicolor imaging and dynamics of subcellular organelles in live cells were also demonstrated.Our method provides a low-cost solution for SIM setup to expand its wide range of applications to most research labs in thefield of life science and medicine.
基金Sponsored by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China(Grant No.2012BAC04B02)Open Project of State Key Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology(Grant No.QA201518)the Key Laboratory of the Education Department of Shaanxi Province(Grant No.12JS051)
文摘Nitrate is considered to be one of the most widely present pollutants leading to eutrophication of environment. The purpose of this work was to isolate and identify new anaerobic denitrifying bacteria from reservoir sediments and utilize different electron donors for isolates to improve nitrate removal efficiency. Using traditional enrichment approach,one purified anaerobic bacterium( Y12) capable of NO-3-N removal from sediments was obtained. The species identity of Y12 was determined via 16 S rRNA gene sequence analysis to be Acinetobacter. In this work,the fastest denitrification rates were observed with ferrous iron as electron donor.And,slightly slower rates were observed with hydrogen and sodium sulfide as electron donors. However,when used hydrogen gas, ferrous iron and sodium sulfide as electron donors, C / N ratios had little effect on autotrophic denitrification rate at the initial C / N ratio from 1.5 to 9.0. Meanwhile,when made use of hydrogen gas,ferrous iron and sodium sulfide as electron donors,a maximum nitrate removal ratio of 100.00%,91.43%and 87.99% at the temperature of 30 ℃,respectively. Moreover,maximum denitrification activity was observed at p H 6.0-7.0.
基金supported by the National Natural Science Foundation of China(No.52000145)the Youth Innovation Team of Shaanxi Universities,China(No.2019No.19)+1 种基金the Key Scientific Research Projects of Education Department of Shaanxi Province,China(No.22JY035)the Project of Youth Talent Lift Program of Shaanxi Association for Science and Technology,China(No.20230447).
文摘A pilot-scale filtration system was adopted to prepare filter media with catalytic activity to remove manganese(Mn^(2+))and ammonium(NH_(4)^(+)-N).Three different combinations of oxidants(KMnO_(4)and K_(2)FeO_(4))and reductants(MnSO_(4)and FeCl_(2))were used during the start-up period.Filter R3 started up by KMnO_(4)and FeCl_(2)(Mn^(7+)→MnO_(x))exhibited excellent catalytic property,and the NH_(4)^(+)-N and Mn^(2+)removal efficiency reached over 80%on the 10th and 35th days,respectively.Filter R1 started up by K_(2)FeO_(4)and MnSO_(4)(MnO_(x)←Mn^(2+))exhibited the worst catalytic property.Filter R2 started up by KMnO_(4)and MnSO_(4)(Mn^(7+)→MnO_(x)←Mn^(2+))were in between.According to Zeta potential results,the Mn-based oxides(MnO_(x))formed by Mn^(7+)→MnO_(x)performed the highest pHIEP and pHPZC.The higher the pHIEP and pHPZC,the more unfavorable the cation adsorption.However,it was inconsistent with its excellent Mn^(2+)and NH_(4)^(+)-N removal abilities,implying that catalytic oxidation played a key role.Combined with XRD and XPS analysis,the results showed that the MnO_(x)produced by the reduction of KMnO_(4)showed early formation of buserite crystals,high degree of amorphous,high content of Mn3+and lattice oxygen with the higher activity to form defects.The above results showed that MnO_(x)produced by the reduction of KMnO_(4)was more conducive to the formation of active species for catalytic oxidation of NH_(4)^(+)-N and Mn^(2+)removal.This study provides new insights on the formation mechanisms of the active MnO_(x)that could catalytic oxidation of NH_(4)^(+)-N and Mn^(2+).
基金supported by the National Natural Science Foundation of China(No.52170100)the Guangdong Basic and Applied Basic Research Foundation(No.2019A1515010843)+1 种基金the Key-Area Research and Development Program of Guangdong Province(No.2019B110205003)the Shenzhen Science and Innovation Commission(Nos.20200813094050001and JCYJ20200109113006046)
文摘Stormwater reuse is one of the most important ways to mitigate water resource shortage.However,urban stormwater contains many bacteria species,which threaten the reuse safety.Therefore,stormwater disinfection is highly needed.Although disinfection has been widely conducted in the drinking water and reclaimed water,it is rarely carried out for stormwater.This study collected the roof stormwater and undertook chlorination disinfection.Two typical bacteria,Escherichia coli(E.coli)and Staphylococcus aureus(S.aureus)were selected in this study to investigate the disinfection efficiency.It is found that bacteria species present in the stormwater had an important influence on disinfection efficiency while the original stormwater quality did not show an obvious affect.However,when the disinfected stormwater was stored,the stormwater quality was highly variable during its storage process and the variability was affected by bacteria species.The S.aureus containing stormwater showed a high variability of quality and S.aureus significantly regrew.However,the E.coli containing stormwater quality had a relatively low variability and E.coli did not significantly regrew.Additionally,it is noted that after storage,the dissolved form of stormwater was more positive to the freshwater algae’s growth while the particulate form(including bacteria and other particulate matters)was less.This implies that a further treatment such as filtration is needed before the stored stormwater is recharged into receiving waters in order to remove particulate forms.These research outcomes can provide useful insight to effective stormwater disinfection and ensure reuse safety.
基金supported by the National Key Research and Development Program of China(No.2016YFC0400706)the National Natural Science Foundation of China(No.51778521)the Shaanxi Science Fund for Distinguished Young Scholars(No.2018JC-026)
文摘Manganese and ammonium pollution in surface water sources has become a serious issue.In this study, a pilot-scale filtration system was used to investigate the effect of ammonium on manganese removal during the simultaneous removal of ammonium and manganese from surface water using a manganese co-oxide filter film(MeO_x ). The results showed that the manganese removal efficiency of MeO_x in the absence of ammonium was high and stable, and the removal efficiency could reach 70% even at 5.5 °C. When the influent ammonium concentration was lower than 0.7 mg/L, ammonium and manganese could be removed simultaneously. However, at an ammonium concentration of 1.5 mg/L, the manganese removal efficiency of the filter gradually decreased with time(from 96% to 46.20%). Nevertheless, there was no impact of manganese on ammonium removal. The mechanism by which ammonium negatively affected manganese removal was investigated, demonstrating that ammonium affected manganese removal mainly through two possible mechanisms. On one hand, the decreased p H caused by ammonium oxidation was unfavorable for the oxidation of manganese by MeO_x ; on the other hand, the presence of ammonium slowed the growth of new MeO_x and retarded the increase in the specific surface area of the Me Ox-coated sand, and induced changes in the morphology and crystal structure of Me Ox. Consequently, the manganese removal efficiency of the filter decreased when ammonium was present in the inlet water.
基金The work was supported by the National Key Research and Development Program of China[grant no.2017YFC0110100]the National Natural Science Foundation of China[grant no.61805272].
文摘Structured illumination microscopy(SIM)has become a widely used tool for insight into biomedical challenges due to its rapid,long-term,and super-resolution(SR)imaging.However,artifacts that often appear in SIM images have long brought into question its fidelity,and might cause misinterpretation of biological structures.We present HiFi-SIM,a high-fidelity SIM reconstruction algorithm,by engineering the effective point spread function(PSF)into an ideal form.HiFi-SIM can effectively reduce commonly seen artifacts without loss of fine structures and improve the axial sectioning for samples with strong background.In particular,HiFi-SIM is not sensitive to the commonly used PSF and reconstruction parameters;hence,it lowers the requirements for dedicated PSF calibration and complicated parameter adjustment,thus promoting SIM as a daily imaging tool.
基金supported by the National Natural Science Foundation of China(No.51608427)the Natural Science Foundation of Shaanxi Province(No.2020JQ-672)+1 种基金the Key Research and Development Program of Shaanxi province(No.2019ZDLSF06-01)the Youth Innovation Team of Shaanxi Universities Funded by Education Department of Shaanxi Province。
文摘Sodium hypochlorite(NaClO)is a commonly applied cleaning agent for ultrafiltration membranes in water and wastewater treatment.Long-term exposure to NaClO might change the properties and performance of polymeric membranes,and ultimately shorten membrane lifespan.Active species in NaClO solution vary with solution pH,and the aging effects can change depending on the membrane material.In this study,the aging of polyvinylidene fluoride(PVDF)and polyethersulfone(PES)membranes by NaClO at pH 3–11 was investigated by examining variations in chemical composition,surface charge,surface morphology,mechanical strength,permeability,and retention ability.Polyvinyl pyrrolidone(PVP),which was blended in both membranes,was oxidized and dislodged due to NaClO aging at all investigated pH values,but the oxidation products and dislodgement ratio of PVP varied with solution pH.For the PVDF membrane,NaClO aging at pH 3–11 caused a moderate increase in permeability and decreased retention due to the oxidation and release of PVP.The tensile strength decreased only at pH 11 because of the defluorination of PVDF molecules.For the PES membrane,NaClO aging at all investigated pH resulted in chain scission of PES molecules,which was favored at pH 7 and 9,potentially due to the formation of free radicals.Therefore,a decrease in tensile strength and retention ability,as well as an increase in permeability,occurred in the PES membrane for NaClO aging at pH 3–11.Overall,the results can provide a basis for selecting chemical cleaning conditions for PVDF and PES membranes.
基金supported by the Ministry of Education of China under the scheme of Key Project of Innovation (Grant No. 705013)the National Natural Science Foundation of China under the Scheme of National Creative Research Groups (Grant No. 50821002)
文摘Permanganate was used as an oxidant to control estrone in the present study. Kinetics was determined at pH 2.5-9.4 and temperature 15–40°C for the reaction of estrone with potassium permanganate. It was found that the reaction is second-order overall and first-order with respect to both estrone and permanganate. The second-order rate constant for the reaction at pH 5.8 and 25°C is 44.45 L mol-1 s-1. The reaction rate first decreased with the increase of pH in the range of 2.5-6.6 and then increased greatly with the increase of pH in the range of 6.6-9.4. In addition, the rate constant exponentially increased with the increase of reaction temperature. Removal of estrogenicity was also investigated during the degradation of estrone using yeast estrogen screen (YES). Results show that the estrogenicity increased in the initial 15 min of reaction and then decreased fast, with a removal rate of 73.8% within the 30 min of reaction. Results also demonstrate that the reaction rate between estrone and permanganate is faster in natural water background than in the ultra-pure water system. Permanganate oxidation is therefore a feasible option for removal of estrone in drinking water treatment processes. However, the contact time must be enough in order to remove estrone without causing the increase of estrogenicity.
基金supported by the National Natural Science Foundation of China(No.51278409)the Education Department of Shaanxi Province(No.15JS046)
文摘Na-rich birnessite(NRB) was synthesized by a simple synthesis method and used as a high-efficiency adsorbent for the removal of ammonium ion(NH+4) from aqueous solution.In order to demonstrate the adsorption performance of the synthesized material,the effects of contact time,pH,initial ammonium ion concentration,and temperature were investigated.Adsorption kinetics showed that the adsorption behavior followed the pseudo second-order kinetic model.The equilibrium adsorption data were fitted to Langmuir and Freundlich adsorption models and the model parameters were evaluated.The monolayer adsorption capacity of the adsorbent,as obtained from the Langmuir isotherm,was 22.61 mg NH+4-N/g at283 K.Thermodynamic analyses showed that the adsorption was spontaneous and that it was also a physisorption process.Our data revealed that the higher NH+4adsorption capacity could be primarily attributed to the water absorption process and electrostatic interaction.Particularly,the high surface hydroxyl-content of NRB enables strong interactions with ammonium ion.The results obtained in this study illustrate that the NRB is expected to be an effective and economically viable adsorbent for ammonium ion removal from aqueous system.
基金the National Natural Science Foundation of China(52071144,51621001,51822104 and 51831009)。
文摘The unstable interfaces between a SnO_(2)anode and an electrolyte in a Li-ion battery dramatically impair the reversibility and cycling stability of lithiation and delithiation,resulting in low roundtrip Coulombic efficiency(CE)and fast capacity decay of SnO_(2)-based anode materials.Herein,a simple strategy of modifying the solid electrolyte interphase(SEI)is developed to enhance the interfacial stability and lithium storage reversibility of SnO_(2)by compositing it with graphite(G)and an inorganic component of the SEI,such as Li_(2)CO_(3)or LiF,which results in the SnO_(2)-Li_(2)CO_(3)/G and SnO_(2)-LiF/G composite anodes with high CEs,large capacities and long cycle lives.Specifically,the SnO_(2)-Li_(2)CO_(3)/G composite anode exhibits an average initial CE of 79.6%,a stable reversible capacity of 927.5 mA hg^(-1)at a current rate of 0.2 A g^(-1),and a charge capacity over 1200 mA hg^(-1)with a CE>99%after 900 cycles at a higher current rate of 1 A g^(-1).It is revealed that Li_(2)CO_(3)induces the formation of a dense and stable SEI on SnO_(2)grains and inhibits the coarsening of nanosized Sn particles generated from the dealloying reaction in the SnO_(2)-Li_(2)CO_(3)/G electrode.Moreover,the CE and cycling stability of other alloying-type(Si)and conversion reaction(MnO_(2)and Fe_(3)O_(4))anodes can also be greatly promoted by simply milling with Li_(2)CO_(3).Thus,a universal and simple strategy is developed to achieve highly reversible and stable electrodes for large-capacity lithium storage.
基金supported by the National Natural Science Foundation of China (Nos.51278409, 51308438)the Natural Science Foundation of Shaanxi Province (No.2014JZ015)the Research Program of China State Construction Engineering Corporation Ltd.(No.CSCEC-2014-Z-32)
文摘To solve the problem of shortened backwashing intervals in groundwater plants, several disinfectants including ozone(O3), hydrogen peroxide(H2O2) and chlorine dioxide(Cl O2)were examined to peel off the film from the quartz sand surface in four pilot-scale columns.An optimized oxidant dosage and oxidation time were determined by batch tests.Subsequently, the optimized conditions were tested in the four pilot-scale columns. The results demonstrated that the backwashing intervals increased from 35.17 to 54.33(H2O2)and to 53.67 hr(ClO2) after the oxidation treatments, and the increase of backwashing interval after treatment by O3 was much less than for the other two treatments.Interestingly, the treatment efficiency of filters was not affected by O3 or H2O2 oxidation;but after oxidation by ClO2, the treatment efficiency was deteriorated, especially the ammonia removal(from 96.96% to 24.95%). The filter sands before and after the oxidation were characterized by scanning electron microscopy and X-ray photoelectron spectroscopy.Compared with the oxidation by O3 and H2O2, the structures on the surface of filter sands were seriously damaged after oxidation by ClO2. The chemical states of manganese on the surfaces of those treated sands were only changed by ClO2. The damage of the structures and the change of the chemical states of manganese might have a negative effect on the ammonia removal. In summary, H2O2 is a suitable agent for film peeling.
基金supported by the National Natural Science Foundation of China(Nos.51978557,51778267)the Shaanxi Science Fund for Distinguished Young Scholars(No.2018JC-026)The Youth Innovation Team of Shaanxi Universities,and Shaanxi Provincial Key Research and Development Project(No.2020ZDLSF06–05).
文摘Filamentous fungi can enter drinking water supply systems in various ways,and exist in suspended or sessile states which threatens the health of individuals by posing a high risk of invasive infections.In this study,the biofilms formation kinetics of the three genera of fungal spores,Aspergillus niger(A.niger),Penicillium polonicum(P.polonicum)and Trichoderma harzianum(T.harzianum)isolated fromthe groundwater were reported,as well as the effects of water quality parameters were evaluated.In addition,the efficiency of low-concentrations of chlorine-based disinfectants(chlorine,chlorine dioxide and chloramine)on controlling the formation of fungal biofilms was assessed.The results showed that the biofilms formation of the three genera of fungi could be divided into the following four phases:induction,exponential,stationary and sloughing off.The optimum conditions for fungal biofilms formation were found to be neutral or weakly acidic at 28°C with rich nutrition.In fact,A.niger,P.polonicum,and T.harzianum were not observed to form mature biofilms in actual groundwater within 120 hr.Carbon was found to have the maximum effect on the fungal biofilms formation in actual groundwater,followed by nitrogen and phosphorus.The resistance of fungal species to disinfectants during the formation of biofilms decreased in the order:A.niger>T.harzianum>P.polonicum.Chlorine dioxide was observed to control the biofilms formation with maximum efficiency,followed by chlorine and chloramine.Consequently,the results of this study will provide a beneficial understanding for the formation and control of fungal biofilms.
基金supported by the Natural Science Foundation of China (Nos. 51978557 , 51678472)the Shaanxi Science Fund for Distinguished Young Scholars (No. 2018JC026)+1 种基金the Youth Innovation Team of Shaanxi UniversitiesShaanxi Provincial Key Research and Development Project (No. 2020ZDLSF06-05)。
文摘Ultraviolet(UV)/monochloramine(NHCl) as an advanced oxidation process was firstly applied for Aspergillus spores inactivation. This study aims to: i) clarify the inactivation and photoreactivation characteristics of UV/NHCl process, ii) compared with UV/Clin inactivation efficiency, photoreactivation and energy consumption. The results illustrated that UV/NHCl showed better inactivation efficiency than that of UV alone and UV/Cl, and could effectively control the photoreactivation. For instance, the inactivation rates for Aspergillus flavus, Aspergillus niger and Aspergillus fumigatus in the processes of UV/NHCl(2.0 mg/L) was 0.034, 0.030 and 0.061 cm^(2)/m J), respectively, which were higher than that of UV alone(0.027, 0.026 and 0.024 cm^(2)/m J) and UV/Cl(0.023, 0.026 and 0.031 cm^(2)/m J). However, there was no synergistic effect for Aspergillus flavus and Aspergillus fumigatus. As for Aspergillus niger, the best synergistic effect can reach 1.86-log 10. This may be due to their different resistance to disinfectants, which were related to the size, an outer layer of rodlets(hydrophobins) and pigments. After UV/NHCl inactivation, the degree of cell membrane damage and intracellular reactive oxygen species were higher than that of UV alone. UV/NHCl had the advantages of high inactivation efficiency and inhibition of photoreactivation, which provides a new entry point for the disinfection of waterborne fungi.