This paper proposes a multiport bidirectional non-isolated converter topology that provides advantages in terms of simultaneous multiple operations,single-stage conversion,high power density and reduced power losses d...This paper proposes a multiport bidirectional non-isolated converter topology that provides advantages in terms of simultaneous multiple operations,single-stage conversion,high power density and reduced power losses due to the lower number of switches.The proposed multiport converter uses a centralized non-linear controller known as a finite control set model predictive controller to manage the flow of power between different ports.It deals with the parallel operation of photovoltaic and battery energy storage systems for stand-alone alternating current(AC)systems.The converter connects the lower voltage battery to the photovoltaic port using a bidirectional buck/boost converter and the photovoltaic port is linked to the stand-alone AC load through a three-phase full-bridge inverter.Each leg of the three-phase converter will act as a bidirectional direct current(DC)/DC converter as well as an inverter simultaneously.Only six switches manage the power transfer between all the connected ports of photovoltaic-battery energy storage system linked to the stand-alone AC load.The proposed multiport converter is mathematically modelled and controlled by a finite control set model predictive controller.The system is validated in simulation(1-kW rating)and experimental environment(200-W rating).The hardware prototype is developed in the laboratory and the controller is implemented on the field-programmable gate array board.Two independent case studies are carried out to validate the efficacy of the system.The first scenario is for a change in solar irradiance,while the second scenario is for a change in the output load.展开更多
文摘This paper proposes a multiport bidirectional non-isolated converter topology that provides advantages in terms of simultaneous multiple operations,single-stage conversion,high power density and reduced power losses due to the lower number of switches.The proposed multiport converter uses a centralized non-linear controller known as a finite control set model predictive controller to manage the flow of power between different ports.It deals with the parallel operation of photovoltaic and battery energy storage systems for stand-alone alternating current(AC)systems.The converter connects the lower voltage battery to the photovoltaic port using a bidirectional buck/boost converter and the photovoltaic port is linked to the stand-alone AC load through a three-phase full-bridge inverter.Each leg of the three-phase converter will act as a bidirectional direct current(DC)/DC converter as well as an inverter simultaneously.Only six switches manage the power transfer between all the connected ports of photovoltaic-battery energy storage system linked to the stand-alone AC load.The proposed multiport converter is mathematically modelled and controlled by a finite control set model predictive controller.The system is validated in simulation(1-kW rating)and experimental environment(200-W rating).The hardware prototype is developed in the laboratory and the controller is implemented on the field-programmable gate array board.Two independent case studies are carried out to validate the efficacy of the system.The first scenario is for a change in solar irradiance,while the second scenario is for a change in the output load.