期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A modified forward and backward reaching inverse kinematics based incremental control for space manipulators 被引量:1
1
作者 gangqi dong Panfeng HUANG +1 位作者 Yongjie WANG Rongsheng LI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第12期287-295,共9页
Forward and backward reaching inverse kinematics(FABRIK)is an efficient two-stage iterative solver for inverse kinematics of spherical-joint manipulator without the calculation of Jacobian matrix.Based on FABRIK,this ... Forward and backward reaching inverse kinematics(FABRIK)is an efficient two-stage iterative solver for inverse kinematics of spherical-joint manipulator without the calculation of Jacobian matrix.Based on FABRIK,this paper presents an incremental control scheme for a free-floating space manipulator consists of revolute joints and rigid links with the consideration of joint constraints and dynamic coupling effect.Due to the characteristics of FABRIK,it can induce large angular movements on specific joints.Apart from that,FABRIK maps three dimensional(3D)problem into two dimensional(2D)problem by a simple geometric projection.This operation can cause infinite loops in some cases.In order to overcome these issues and apply FABRIK on space manipulators,an increments allocation method is developed to constrain the angular movements as well as to re-orient the end-effector.The manipulator is re-positioned based on the momentum conservation law.Instead of pure target position tracking,the orientation control of the end-effector is also considered.Numerical simulation is performed to testify and demonstrate the effectiveness and reliability of the proposed incremental control approach. 展开更多
关键词 Forward and backward reaching inverse kinematics(FABRIK) Incremental control Inverse kinematics Manipulator control Robotic capture
原文传递
Capture and detumbling control for active debris removal by a dual-arm space robot 被引量:1
2
作者 dong HAN gangqi dong +1 位作者 Panfeng HUANG Zhiqing MA 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第9期342-353,共12页
Active debris removal(ADR) technology is an effective approach to remediate the proliferation of space debris, which seriously threatens the operational safety of orbital spacecraft. This study aims to design a contro... Active debris removal(ADR) technology is an effective approach to remediate the proliferation of space debris, which seriously threatens the operational safety of orbital spacecraft. This study aims to design a controller for a dual-arm space robot to capture tumbling debris, including capture control and detumbling control. Typical space debris is considered as a non-cooperative target, which has no specific capture points and unknown dynamic parameters. Compliant clamping control and the adaptive backstepping-based prescribed trajectory tracking control(PTTC)method are proposed in this paper. First, the differential geometry theory is utilized to establish the constraint equations, the dynamic model of the chaser-target system is obtained by applying the Hamilton variational principle, and the compliance clamping controller is further designed to capture the non-cooperative target without contact force feedback. Next, in the post-capture phase,an adaptive backstepping-based PTTC is proposed to detumble the combined spacecraft in the presence of model uncertainties. Finally, numerical simulations are carried out to validate the feasibility of the proposed capture and detumbling control method. Simulation results indicate that the target detumbling achieved by the PTTC method can reduce propellant consumption by up to24.11%. 展开更多
关键词 Active debris removal Adaptive backstepping control Compliant clamping control Prescribed trajectory tracking Space robot
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部